Ex 5.1 class 12 maths ncert solutions | class 12 maths exercise 5.1 | class 12 maths ncert solutions chapter 5 exercise 5.1 | exercise 5.1 class 12 maths ncert solutions | continuity and differentiability class 12 ncert solutions
Looking for Ex 5.1 Class 12 Maths NCERT Solutions? You’re in the right place! This section provides detailed, step-by-step solutions for Exercise 5.1 Class 12 Maths, based on Chapter 5 – Continuity and Differentiability from the NCERT textbook. These Class 12 Maths Exercise 5.1 Solutions are designed to help students understand important concepts like continuity of functions, types of discontinuities, and graphical understanding of continuity. Whether you’re preparing for board exams or aiming to build a solid foundation in calculus, these NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.1 will make the learning process easier and more effective. Dive into these expert explanations and boost your confidence in Continuity and Differentiability today!

class 12 maths exercise 5.1 || exercise 5.1 class 12 maths ncert solutions || ex 5.1 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.1
Exercise 5.1
At \( x=0, \mathrm{f}(0)=5 \times 0-3=-3 \)
\( \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}(5 x-3)=5 \times 0-3=-3 \)
Thus, \( \lim _{x \rightarrow 0} f(x)=f(0) \)
Therefore, \( f \) is continuous at \( x=0 \)
At \( x=-3, f(-3)=5 \times(-3)-3=-18 \)
\( \lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow}(5 x-3)=5 \times(-3)-3=-18 \)
Thus, \( \lim _{x \rightarrow 3} f(x)=f(-3) \)
Therefore, \( f \) is continuous at \( x=-3 \)
At \( x=5, \mathrm{f}(5)=5 \times 5-3=22 \)
\( \lim _{x \rightarrow 5} f(x)=\lim _{x \rightarrow 5}(5 x-3)=5 \times 5-3=22 \)
Thus,
Therefore, \( f \) is continuous at \( x=5 \)
At \( x=3, f(x)=f(3)=2 \times 3^{2}-1=17 \)
Left hand limit (LHL):
Right hand \( \operatorname{limit}(\mathrm{RHL}) \) :
As, \( \mathrm{LHL}=\mathrm{RHL}=\mathrm{f}(3) \)
Therefore, f is continuous at \( x=3 \)
\(f(x)=x-5\)
We know that \( f \) is defined at every real number \( k \) and its value at \( k \) is \( k- \) 5.
We can see that \( \lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(x-5)=\mathrm{k}-5=\mathrm{f}(\mathrm{k}) \)
Thus, \( \lim _{x \rightarrow k} f(x)=\mathrm{f}(\mathrm{k}) \)
Therefore, \( f \) is continuous at every real number and thus, it is continuous function.
\(f(x)=\frac{1}{x-5}\)
For any real number \( \mathrm{k} \neq 5 \), we get,
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k} \frac{1}{x-5}=\lim _{(k-5)} \frac{1}{k-5}\)
Also, \( \mathrm{f}(\mathrm{k})=\frac{1}{k-5}( \) Ask \( \neq 5) \)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Therefore, \( f \) is continuous at point in the domain of \( f \) and thus, it is continuous function.
\(\mathrm{f}(x)=\frac{x^{2}-25}{x+5}\)
For any real number \( \mathrm{k} \neq 5 \), we get,
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k} \frac{x^{2}-25}{x+5}=\lim _{x \rightarrow k} \frac{(x-5)(x+5)}{x+5}=\lim _{x \rightarrow k}(x-5)=(\mathrm{k}-5)\)
Also, \( \mathrm{f}(\mathrm{k})=\lim _{x \rightarrow k} \frac{(k-5)(k+5)}{k+5}=\lim _{x \rightarrow k}(k-5)=(\mathrm{k}-5)( \text{ ask} \neq 5) \)
Thus, \( \lim _{x \rightarrow k} f(x)=\mathrm{f}(\mathrm{k}) \)
Therefore, \( f \) is continuous at point in the domain of \( f \) and thus, it is continuous function.
\(f(x)=|x-5|\)
The function f is defined at all points of the real line.
Let k be the point on a real line.
Then, we have 3 cases i.ee, \( k < 5 \), or \( k=5 \) or \( k > 5 \)
Now, Case I: \( k < 5 \)
Then, \( \mathrm{f}(\mathrm{k})=5-\mathrm{k} \)
\( \lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(5-x)=5-\mathrm{k}=\mathrm{f}(\mathrm{k}) \)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all real number less than 5 .
Case II: \( \mathrm{k}=5 \)
Then, \( \mathrm{f}(\mathrm{k})=\mathrm{f}(5)=5-5=0 \)
\(\begin{array}{l}
\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5}(5-x)=5-5=0 \\
\lim _{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5}(5-x)=5-5=0 \\
=\lim _{x \rightarrow k^{-}} f(x)=\lim _{x \rightarrow k^{+}} f(x)=f(k)
\end{array}\)
Hence, f is continuous at \( x=5 \).
Case III: \( \mathrm{k} > 5 \)
Then, \( \mathrm{f}(\mathrm{k})=\mathrm{k}-5 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(x-5)=\mathrm{k}-5=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all real number greater than 5 .
Therefore, \( f \) is a continuous function.
We can see that \( f \) is defined at all positive integers, \( n \) and the value of \( f \) at \(n\) is \( \mathrm{n}^{\mathrm{n}} \).
\(=\lim _{x \rightarrow n} f(n)=\lim _{x \rightarrow n}\left(x^{n}\right)=\mathrm{n}^{\mathrm{n}}\)
Thus, \( \lim _{x \rightarrow n} f(x)=f(n) \)
Therefore, f is continuous at \( x=\mathrm{n} \), where n is a positive integer.
class 12 maths exercise 5.1 || exercise 5.1 class 12 maths ncert solutions || ex 5.1 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.1
Case I: \( x=0 \)
We can see that f is defined at 0 and its value at 0 is 0 .
LHL
\(\lim _{x \rightarrow 0^{-}}=\lim _{h \rightarrow 0} f(0-h)\)
\(=\lim _{h \rightarrow 0}-h=0\)
RHL
\(\lim _{x \rightarrow 0^{+}}=\lim _{h \rightarrow 0} f(0+h)\)
\(=\lim _{h \rightarrow 0} h=0\)
LHL \( = \) RHL \( =f(0) \) Hence, \( f \) is continuous at \( x=0 \).
Case II: \( x=1 \)
We can see that f is defined at 1 and its value at 1 is 1 .
For \( x < 1 \)
\( \mathrm{f}(x)=x \) Hence, LHL:
\(\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x=1\)
For \( x > 1 \mathrm{f}(x)= \) 5therefore, RHL
\(\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(5)=5\)
\(=\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)\)
Hence, f is not continuous at \( x=1 \).
Case III: \( x=2 \)
As,
We can see that f is defined at 2 and its value at 2 is 5
LHL:
\(\lim _{x \rightarrow 2^{-}}=\lim _{h \rightarrow 0} f(2-h)\)
\(=\lim _{h \rightarrow 0} 5=5\)
here \( \mathrm{f}(2-\mathrm{h})=5 \), as \( \mathrm{h} \rightarrow 0 \Rightarrow 2-\mathrm{h} \rightarrow 2 \) RHL:
\(\lim _{x \rightarrow 2^{+}}=\lim _{h \rightarrow 0}(2+h)\)
\(=\lim _{h \rightarrow 0} 5=5\)
\( \mathrm{LHL}= \) RHL \( =\mathrm{f}(2) \)
here \( \mathrm{f}(2+\mathrm{h})=5 \), as \( \mathrm{h} \rightarrow 0 \Rightarrow 2+\mathrm{h} \rightarrow 2 \)
Hence, f is continuous at \( x=2 \).
2 x+3, \text { if } x \leq 2 \\
2 x-3, \text { if } x \geq 2 \end{array}\right.\)
The function f is defined at all points of the real line.
Let k be the point on a real line.
Then, we have 3 cases i.e., \( \mathrm{k} < 2 \), or \( \mathrm{k}=2 \) or \( \mathrm{k} > 2 \)
Now, Case I: \( \mathrm{k} < 2 \)
Then, \( \mathrm{f}(\mathrm{k})=2 \mathrm{k}+3 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(2 x+3)=2 \mathrm{k}+3=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all real number less than 2 .
Case II: \( \mathrm{k}=2 \)
\(\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(2 x+3)=2 \times 2+3=7\)
\(\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(2 x-3)=2 \times 2-3=1\)
\(=\lim _{x \rightarrow k^{-}} f(k) \neq \lim _{x \rightarrow k^{+}} f(k)=f(k)\)
Hence, f is not continuous at \( x=2 \).
Case III: \( \mathrm{k} > 2 \)
Then, \( \mathrm{f}(\mathrm{k})=2 \mathrm{k}-3 \)
\( \lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(2 x-3)=2 \mathrm{k}-3=\mathrm{f}(\mathrm{k}) \)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all real number greater than 2 .
Therefore, \( x=2 \) is the only point of discontinuity of \( f \).
The function f is defined at all points of the real line.
Let k be the point on a real line.
Then, we have 5 cases i.e., \( \mathrm{k} < -3, \mathrm{k}=-3,-3 < \mathrm{k} < 3, \mathrm{k}=3 \) or \( \mathrm{k} > 3 \)
Now, Case I: \( \mathrm{k} < -3 \)
Then, \( \mathrm{f}(\mathrm{k})=-\mathrm{k}+3 \)
\( \lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(-x+3)=-\mathrm{k}+3=\mathrm{f}(\mathrm{k}) \)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all real number \( x < -3 \).
Case II: \( \mathrm{k}=-3 \)
\(\begin{array}{l}
f(-3)=-(-3)+3=6 \\
\lim _{x \rightarrow-3^{-}} f(x)=\lim _{x \rightarrow-3^{-}}(-x+3)=-(-3)+3=6 \\
\lim _{x \rightarrow-3^{+}} f(x)=\lim _{x \rightarrow-3^{-}}(-2 x)=-2 \times(-3)=6 \\
=\lim _{x \rightarrow k^{-}} f(x)=\lim _{x \rightarrow k^{+}} f(x)=f(k)
\end{array}\)
Hence, f is continuous at \( x=-3 \).
Case III: \( -3 < \mathrm{k} < 3 \)
Then, \( \mathrm{f}(\mathrm{k})=-2 \mathrm{k} \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(-2 x)=-2 \mathrm{k}=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, \( f \) is continuous in \( (-3,3) \).
Case IV: \( \mathrm{k}=3 \)
\(\begin{array}{l}
\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(-2 x)=-2 \times(3)=-6 \\
\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(6 x+2)=6 \times 3+2=20 \\
=\lim _{x \rightarrow k^{-}} f(x) \neq \lim _{x \rightarrow k^{+}} f(x)
\end{array}\)
Hence, f is not continuous at \( x=3 \).
Case V: \( \mathrm{k} > 3 \)
Then, \( \mathrm{f}(\mathrm{k})=6 \mathrm{k}+2 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(6 x+2)=6 \mathrm{k}+2=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all real number \( x < 3 \).
Therefore, \( x=3 \) is the only point of discontinuity of \( f \).
\frac{|x|}{x}, \text { if } x \neq 0 \\
0, \text { if } x=0
\end{array}\right.\)
We know that if \( x > 0 \)
\(\Rightarrow|x|=-x \text { and } x > 0\)
\(\Rightarrow|x|=x\)
So, we can rewrite the given function as:
\(\mathrm{f}(x)=\left\{\begin{array}{l}
\frac{|x|}{x}=\frac{-x}{x}=-1, \text { if } x < 0 \\
\frac{|x|}{x}=\frac{x}{x}=1, \text { if } x > 0
\end{array}\right.\)
The function f is defined at all points of the real line.
Let k be the point on a real line.
Then, we have 3 cases i.e., \( \mathrm{k} < 0 \), or \( \mathrm{k}=0 \) or \( \mathrm{k} > 0 \).
Now, Case I: \( \mathrm{k} < 0 \)
Then, \( \mathrm{f}(\mathrm{k})=-1 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(-1)=-1=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all real number less than 0 .
Case II: \( \mathrm{k}=0 \)
\(\begin{array}{l}
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(-1)=-1 \\
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(1)=1 \\
=\lim _{x \rightarrow k^{-}} f(x) \neq \lim _{x \rightarrow k^{+}} f(x)=f(k)
\end{array}\)
Hence, f is not continuous at \( x=0 \).
Case III: \( \mathrm{k} > 0 \)
Then, \( \mathrm{f}(\mathrm{k})=1 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(1)=1=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all real number greater than 1.
Therefore, \( x=0 \) is the only point of discontinuity of \( f \).
\frac{x}{|x|}, \text { if } x < 0 \\
-1, \text { if } x \geq 0
\end{array}\right.\)
We know that if \( x < 0 \)
\(\Rightarrow|x|=-x\)
So, we can rewrite the given function as:
\(\mathrm{f}(x)=\left\{\begin{array}{c}
\frac{x}{|x|}=\frac{x}{-x}=-1, \text { if } x < 0 \\
-1, \text { if } x \geq 0
\end{array}\right.\)
\( \Rightarrow \mathrm{f}(x)=-1 \) for all \( x \in \mathrm{R} \)
Let k be the point on a real line.
Then, \( \mathrm{f}(\mathrm{k})=-1 \)
\( \lim _{x \rightarrow k} f(k)=\lim _{x \rightarrow k}(-1)=-1=\mathrm{f}(\mathrm{k}) \)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Therefore, the given function is a continuous function.
x+1, \text { if } x \geq 0 \\
x^{2}+1, \text { if } x < 0
\end{array}\right.\)
The function f is defined at all points of the real line.
Let k be the point on a real line.
Then, we have 3 cases i.e., \( \mathrm{k} < 1 \), or \( \mathrm{k}=1 \) or \( \mathrm{k} > 1 \)
Now, Case I: \( \mathrm{k} < 1 \)
Then, \( \mathrm{f}(\mathrm{k})=\mathrm{k}^{2}+1 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}\left(x^{2}+1\right)=\mathrm{k}^{2}+1=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all real number less than 1.
Case II: \( \mathrm{k}=1 \)
Then, \( \mathrm{f}(\mathrm{k})=\mathrm{f}(1)=1+1=2 \)
\(\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}+1\right)=1^{2}+1=2\)
\(\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(x+1)=1+1=2\)
\(=\lim _{x \rightarrow k^{-}} f(x)=\lim _{x \rightarrow k^{+}} f(x)=f(k)\)
Hence, f is continuous at \( x=1 \).
Case III: \( \mathrm{k} > 1 \)
Then, \( \mathrm{f}(\mathrm{k})=\mathrm{k}+1 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(x+1)=\mathrm{k}+1=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all real number greater than 1.
x^{3}-3, \text { if } x \leq 2 \\
x^{2}+1, \text { if } x > 2
\end{array}\right.\)
The function f is defined at all points of the real line.
Let k be the point on a real line.
Then, we have 3 cases i.e., \( \mathrm{k} < 2 \), or \( \mathrm{k}=2 \) or \( \mathrm{k} > 2 \)
Now, Case I: \( \mathrm{k} < 2 \)
Then, \( f(k)=k^{3}-3 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}\left(x^{3}-3\right)=\mathrm{k}^{3}-3=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all real number less than 2 .
Case II: \( \mathrm{k}=2 \)
Then, \( \mathrm{f}(\mathrm{k})=\mathrm{f}(2)=2^{3}-3=5 \)
\(\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(x^{3}-3\right)=2^{3}-3=5\)
\(\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(x^{2}+1\right)=2^{2}+1=5\)
\(=\lim _{x \rightarrow k^{-}} f(x)=\lim _{x \rightarrow k^{+}} f(x)=f(k)\)
Hence, f is continuous at \( x=2 \).
Case III: \( \mathrm{k} > 2 \)
Then, \( \mathrm{f}(\mathrm{k})=2^{2}+1=5 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}\left(x^{2}+1\right)=2^{2}+1=5=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all real number greater than 2 .
x^{10}-1, \text { if } x \leq 1 \\
x^{2}, \text { if } x > 1
\end{array}\right.\)
The function f is defined at all points of the real line.
Let k be the point on a real line.
Then, we have 3 cases i.e., \( \mathrm{k} < 1 \), or \( \mathrm{k}=1 \) or \( \mathrm{k} > 1 \)
Now,
Case I: \( \mathrm{k} < 1 \)
Then, \( \mathrm{f}(\mathrm{k})=\mathrm{k}^{10}-1 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}\left(x^{10}-1\right)=\mathrm{k}^{10}-1=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all real number less than 1.
Case II: \( \mathrm{k}=1 \)
Then, \( \mathrm{f}(\mathrm{k})=\mathrm{f}(1)=1^{10}-1=0 \)
\(\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{10}-1\right)=1^{10}-1=0\)
\(\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}\left(x^{2}\right)=1^{2}=1\)
\(=\lim _{x \rightarrow k^{-}} f(x) \neq \lim _{x \rightarrow k^{+}} f(x)\)
Hence, f is not continuous at \( x=1 \).
Case III: \( \mathrm{k} > 1 \)
Then, \( \mathrm{f}(\mathrm{k})=1^{2}=1 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}\left(x^{2}\right)=1^{2}=1=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all real number greater than 1.
Therefore, \( x=1 \) is the only point of discontinuity of \( f \).
The function f is defined at all points of the real line.
Let k be the point on a real line.
Then, we have 3 cases i.e., \( \mathrm{k} < 1 \), or \( \mathrm{k}=1 \) or \( \mathrm{k} > 1 \)
Now,
Case I: \( \mathrm{k} < 1 \)
Then, \( \mathrm{f}(\mathrm{k})=\mathrm{k}+5 \)
\( \lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(x+5)=\mathrm{k}+5=\mathrm{f}(\mathrm{k}) \)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all real number less than 1.
Case II: \( \mathrm{k}=1 \)
Then, \( \mathrm{f}(\mathrm{k})=\mathrm{f}(1)=1+5=6 \)
\(\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(x+5)=1+5=6\)
\(\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(x-5)=1-5=-4\)
\(=\lim _{x \rightarrow k^{-}} f(x) \neq \lim _{x \rightarrow k^{+}} f(x)\)
Hence, f is not continuous at \( x=1 \).
Case III: \( \mathrm{k} > 1 \)
Then, \( f(k)=k-5 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(x-5)=\mathrm{k}-5\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all real number greater than 1.
Therefore, \( x=1 \) is the only point of discontinuity of \( f \).
class 12 maths exercise 5.1 || exercise 5.1 class 12 maths ncert solutions || ex 5.1 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.1
3 \ \text{if} \ 0 \leq x \leq 1 \\
4 \ \text{if} \ 1 < x < 3 \\
5 \ \text{if} \ 3 \leq x \leq 10
\end{array}\right.\)
3 \ \text{if} \ 0 \leq x \leq 1 \\
4 \ \text{if} \ 1 < x < 3 \\
5 \ \text{if} \ 3 \leq x \leq 10
\end{array}\right.\)
The function f is defined at all points of the interval \( [0,10] \).
Let k be the point in the interval \( [0,10] \).
Then, we have 5 cases i.e., \( 0 \leq \mathrm{k} < 1, \mathrm{k}=1,1 < \mathrm{k} < 3, \mathrm{k}=3 \) or \( 3 < \mathrm{k} \leq 10\) .
Now, Case I: \( 0 \leq \mathrm{k} < 1 \)
Then, \( \mathrm{f}(\mathrm{k})=3 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(3)=3=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous in the interval \( [0,10) \).
Case II: \( \mathrm{k}=1 \)
\(\mathrm{f}(1)=3\)
\(\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(3)=3\)
\(\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(4)=4\)
\(=\lim _{x \rightarrow k^{-}} f(x) \neq \lim _{x \rightarrow k^{+}} f(x)\)
Hence, f is not continuous at \( x=1 \).
Case III: \( 1 < \mathrm{k} < 3 \)
Then, \( f(k)=4 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(4)=4=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous in \( (1,3) \).
Case IV: \( \mathrm{k}=3 \)
\(\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(4)=4\)
\(\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(5)=5\)
\(=\lim _{x \rightarrow k^{-}} f(x) \neq \lim _{x \rightarrow k^{+}} f(x)\)
Hence, f is not continuous at \( x=3 \).
Case V: \( 3 < \mathrm{k} \leq 10 \)
Then, \( f(k)=5 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(5)=5=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow} f(x)=f(k) \)
Hence, \( f \) is continuous at all points of the interval (3, 10].
Therefore, \( x=1 \) and 3 are the points of discontinuity of \( f \).
The function f is defined at all points of the real line.
Then, we have 5 cases i.e., \( \mathrm{k} < 0, \mathrm{k}=0,0 < \mathrm{k} < 1, \mathrm{k}=1 \) or \( \mathrm{k} < 1 \).
Now, Case I: \( \mathrm{k} < 0 \)
Then, \( \mathrm{f}(\mathrm{k})=2 \mathrm{k} \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(2 x)=2 \mathrm{k}=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all points \(x \), s.t. \( x < 0 \).
Case II: \( \mathrm{k}=0 \)
\(\mathrm{f}(0)=0\)
\(\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(2 x)=2 \times 0=0\)
\(\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(0)=0\)
\(=\lim _{x \rightarrow k^{-}} f(x)=\lim _{x \rightarrow k^{+}} f(x)=f(k)\)
Hence, \( f \) is continuous at \( x=0 \).
Case III: \( 0 < \mathrm{k} < 1 \)
Then, \( \mathrm{f}(\mathrm{k})=0 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(0)=0=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, \( f \) is continuous in \( (0,1) \).
Case IV: \( \mathrm{k}=1 \)
Then \( \mathrm{f}(\mathrm{k})=\mathrm{f}(1)=0 \)
\(\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(0)=0\)
\(\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(4 x)=4 \times 1=4\)
\(=\lim _{x \rightarrow k^{-}} f(x) \neq \lim _{x \rightarrow k^{+}} f(x)\)
Hence, f is not continuous at \( x=1 \).
Case V: \( \mathrm{k} < 1 \)
Then, \( \mathrm{f}(\mathrm{k})=4 \mathrm{k} \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(4 x)=4 \mathrm{k}=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all points \(x \), s.t. \( x > 1 \).
Therefore, \( x=1 \) is the only point of discontinuity of \( f \).
-2, \text { if } x \leq-1 \\
2 x, \text { if } 0 \leq x \leq 1 \\
2, \text { if } f > 1
\end{array}\right.\)
Discuss the continuity of the function \( f \), where \( f \) is defined by
The function f is defined at all points of the real line.
Then, we have 5 cases i.e., \( \mathrm{k} < -1, \mathrm{k}=-1,-1 < \mathrm{k} < 1, \mathrm{k}=1 \) or \( \mathrm{k} > 1 \).
Now, Case I: \( \mathrm{k} < 0 \)
Then, \( \mathrm{f}(\mathrm{k})=-2 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k} f(x)=-2=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all points \(x \), s.t. \( x < -1 \).
Case II: \( \mathrm{k}=-1 \)
\(\mathrm{f}(\mathrm{k})=\mathrm{f}(=1)=-2\)
\(\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}}(-2)=-2\)
\(\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}}(2 x)=2 \times(-1)=-2\)
\(=\lim _{x \rightarrow k^{-}} f(x)=\lim _{x \rightarrow k^{+}} f(x)=f(k)\)
Hence, f is continuous at \( x=-1 \).
Case III: \( -1 < \mathrm{k} < 1 \)
Then, \( \mathrm{f}(\mathrm{k})=2 \mathrm{k} \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(-2)=2 \mathrm{k}=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, \( f \) is continuous in \( (-1,1) \).
\(\text { Case IV: } \mathrm{k}=1\)
\(\text { Then } \mathrm{f}(\mathrm{k})=\mathrm{f}(1)=2 \times 1=2\)
\(\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(2 x)=2 \times 1=2\)
\(\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(2)=2\)
\(=\lim _{x \rightarrow k^{-}} f(x)=\lim _{x \rightarrow k^{+}} f(x)=f(x)\)
Hence, f is continuous at \( x=1 \).
Case V: \( \mathrm{k} > 1 \)
Then, \( f(k)=2 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(2)=2=\mathrm{f}(\mathrm{k})\)
Thus, \( \lim _{x \rightarrow k} f(x)=f(k) \)
Hence, f is continuous at all points \(x \), s.t. \( x > 1 \).
Therefore, f is continuous at all points of the real line.
It is given that f is continuous at \( x=3 \), then, we get,
\(\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=\mathrm{f}(3) \ldots(1)\)
And
\(\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(a x+1)=3 \mathrm{a}+1\)
\(\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(b x+3)=3 \mathrm{~b}+1\)
\(\mathrm{f}(3)=3 \mathrm{a}+1\)
Thus, from (1), we get,
\(3 a+1=3 b+3=3 a+1\)
\(\Rightarrow 3 a+1=3 b+1\)
\(\Rightarrow 3 a=3 b\)
\(\Rightarrow a=b\)
Therefore, the required the relation is \( \mathrm{a}=\mathrm{b}\).
It is given that f is continuous at \( x=0 \), then, we get,
\(\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=\mathrm{f}(0)\)
And
\(\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(\lambda\left(x^{2}-2 x\right)\right)=\lim _{x \rightarrow 0^{-}}\left(\lambda\left(0^{2}-2 \times 0\right)\right)=0\)
\(\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(4 x+1)=4 \times 0+1=1\)
\(\therefore \lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)\)
Thus, there is no value of for which f is continuous at \( x=0 \)
\(\mathrm{f}(1)=4 x+1=4 \times 1+1=5\)
\(\lim _{x \rightarrow 1}(4 x+1)=4 \times 1+1=5\)
Then, \( \lim _{x \rightarrow 1} f(x)=f(1) \)
Hence, for any values of, \( f \) is continuous at \( x=1 \)
We know that g is defined at all integral points.
Let k be ant integer.
Then,
\(\mathrm{g}(\mathrm{k})=\mathrm{k}-[-\mathrm{k}]=\mathrm{k}+\mathrm{k}=2 \mathrm{k}\)
\(\lim _{x \rightarrow k^{-}} g(k)=\lim _{x \rightarrow k^{-}}(x-[x])\)
\(\lim _{x \rightarrow k^{-}}(x)=\lim _{x \rightarrow k^{-}}[x]=\mathrm{k}-(\mathrm{k}-1)=1\)
And
\(\lim _{x \rightarrow k^{+}} g(x)=\lim _{x \rightarrow k^{+}}(x-[x])\)
\(\lim _{x \rightarrow k^{+}}(x)-\lim _{x \rightarrow k^{+}}[x]=\mathrm{k}-\mathrm{k}=0\)
\(\therefore \lim _{x \rightarrow k^{-}} f(x) \neq \lim _{x \rightarrow k^{+}} f(x)\)
Therefore, \(g\) is discontinuous at all integral points.
class 12 maths exercise 5.1 || exercise 5.1 class 12 maths ncert solutions || ex 5.1 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.1
We know that f is defined at \( x=\pi \)
So, at \( x=\pi \),
\(\mathrm{f}(x)=\mathrm{f}(\pi)=\pi^{2}-\sin \pi+5=\pi^{2}-0+5=\pi 2+5\)
Now, \( \lim _{x \rightarrow \pi} f(x)=\lim _{x \rightarrow \pi} f\left(x^{2}-\sin x+5\right) \)
Let put \( x=\pi+\mathrm{h} \)
If \( x \rightarrow \pi \), then we know that \( \mathrm{k} \rightarrow 0 \)
\(\therefore \lim _{x \rightarrow \pi} f(x)=\lim _{x \rightarrow \pi}\left(x^{2}-\sin x+5\right)\)
\(=\lim _{k \rightarrow 0} f\left[(\pi+k)^{2}-\sin (\pi+k)+5\right]\)
\(=\lim _{k \rightarrow 0} f(\pi+k)^{2}-\lim _{k \rightarrow 0} \sin (\pi+k)+\lim _{k \rightarrow 0} 5\)
\(=(\pi+0)^{2}-\lim _{k \rightarrow 0}[\sin \pi \cos k+\cos \pi \sin k]+5\)
\(=\pi^{2}-\lim _{k \rightarrow 0} \sin \pi \cos k-\lim _{k \rightarrow 0} \cos \pi \sin k+5\)
\(=\pi^{2}-\sin \pi \cos 0-\cos \pi \sin 0+5\)
\(=\pi^{2}-0 \times 1(-1) \times 0+5\)
\(=\pi^{2}+5\)
Thus, \( \lim _{x \rightarrow \pi} f(x) f(\pi) \)
Therefore, the function f is continuous at \( x=\pi \).
(a) \( f(x)=\sin x+\cos x \)
(b) \( f(x)=\sin x-\cos x \)
(c) \( f(x)=\sin x \cdot \cos x \)
First we have to prove that \( \mathrm{g}(x)=\sin x \) and \( \mathrm{k}(x)=\cos x \) are continuous functions.
Now, let \( \mathrm{g}(x)=\sin x \)
We know that \( \mathrm{g}(x)=\sin x \) is defined for every real number.
Let h be a real number. Now, put \( x=\mathrm{h}+\mathrm{k} \)
So, if \( x \rightarrow \mathrm{h} \) and \( \mathrm{k} \rightarrow 0 \)
\(\mathrm{g}(\mathrm{h})=\sin \mathrm{h}\)
\(\lim _{x \rightarrow h} g(x)=\lim _{x \rightarrow h} \sin x\)
\(=\lim _{x \rightarrow 0} \sin (h+k)\)
\(=\lim _{x \rightarrow 0}[\sin h \cos k+\cos h \sin k]\)
\(=\sin h \cos 0+\cos h \sin 0\)
\(=\sin h+0\)
\(=\sin h\)
Thus, \( \lim _{x \rightarrow h} g(x)=g(h) \)
Therefore, g is a continuous function \(\ldots(1)\)
Now, let \( \mathrm{k}(x)=\cos x \)
We know that \( \mathrm{k}(x)=\cos x \) is defined for every real number.
Let h be a real number. Now, put \( x=\mathrm{h}+\mathrm{k} \)
So, if \( x \rightarrow \mathrm{h} \) and \( \mathrm{k} \rightarrow 0 \)
Now \( k(\mathrm{~h})=\cos \mathrm{h} \)
\( \lim _{x \rightarrow h} k(x)=\lim _{x \rightarrow h} \cos x \)
\( =\lim _{k \rightarrow 0} \cos (h+k) \)
\( =\lim _{x \rightarrow 0}[\cos h \cos k-\sin h \sin k] \)
\( =\cos h \cos 0-\sin h \sin 0 \)
\( =\cos h -0 \)
\( =\cos h \)
Thus, \( \lim _{x \rightarrow h} k(x)=k(h) \)
Therefore, k is a continuous function \(\ldots(2)\)
So, from (1) and (2), we get,
(a) \( f(x)=g(x)+k(x)=\sin x+\cos x \) is a continuous function.
(b) \( f(x)=g(x)-k(x)=\sin x-\cos x \) is a continuous function.
(c) \( f(x)=g(x) \times k(x)=\sin x \times \cos x \) is a continuous function.
(i) \( \frac{h(x)}{g(x)}, \mathrm{g}(x) \neq 0 \) is continuous
(ii) \( \frac{1}{g(x)}, \mathrm{g}(x) \neq 0 \) is continuous
So, first we have to prove that \( \mathrm{g}(x)=\sin x \) and \( \mathrm{h}(x)=\cos x \) are continuous functions.
Let \( \mathrm{g}(x)=\sin x \)
We know that \( \mathrm{g}(x)=\sin x \) is defined for every real number.
Let h be a real number. Now, put \( x=\mathrm{k}+\mathrm{h} \)
So, if \( x \rightarrow \mathrm{k} \) and \( \mathrm{h} \rightarrow 0 \)
\(\mathrm{g}(\mathrm{k})=\operatorname{sink}\)
\(\lim _{x \rightarrow k} g(x)=\lim _{x \rightarrow k} \sin x\)
\(=\lim _{h \rightarrow 0} \sin (k+h)\)
\(=\lim _{h \rightarrow 0}[\sin k \cos h+\cos k \sin h]\)
\(=\sin k \cos 0+\cos k \sin 0\)
\(=\sin \mathrm{k}+0\)
\(=\sin k\)
Thus, \( \lim _{x \rightarrow k} g(x)=g(k) \)
Therefore, \( g \) is a continuous function ... (1)
Let \( \mathrm{h}(x)=\cos x \)
We know that \( \mathrm{h}(x)=\cos x \) is defined for every real number.
Let k be a real number. Now, put \( x=\mathrm{k}+\mathrm{h} \)
So, if \( x \rightarrow \mathrm{k} \) and \( \mathrm{h} \rightarrow 0 \)
\(\mathrm{h}(\mathrm{k})=\sin k\)
\(\lim _{x \rightarrow k} h(x)=\lim _{x \rightarrow k} \cos x\)
\(=\lim _{h \rightarrow 0} \cos (k+h)\)
\(=\lim _{h \rightarrow 0}[\cos k \cos h-\sin k \sin h]\)
\(=\cos k \cos 0-\sin k \sin 0\)
\(=\cos \mathrm{k}-0\)
\(=\cos \mathrm{k}\)
\(\text { Thus, } \lim _{x \rightarrow k} h(x)=h(k)\)
Therefore, g is a continuous function ... (2)
So, from (1) and (2), we get,
\( \operatorname{Cosec} x=\frac{1}{\sin x}, \sin x \neq 0 \) is continuous
\( =\operatorname{cosec} x, \neq \mathrm{n} \pi(\mathrm{n} \in \mathrm{Z}) 0 \) is continuous
Thus, cosecant is continuous except at \( x=n p,(n \in Z) \)
\( \operatorname{Sec} x=\frac{1}{\cos x}, \cos x \neq 0 \) is continuous
\( = \sec x, x \neq(2 n+1) \frac{\pi}{2}(n \in Z) \) is continuous
Thus, secant is continuous except at \( x=(2 \mathrm{n}+1) \frac{\pi}{2},(\mathrm{n} \in \mathrm{Z}) \)
\( \operatorname{Cot} x=\frac{\cos x}{\sin x}, \sin x \neq 0 \) is continuous
\( =\cot x, x \neq n \pi(n \in Z) 0 \) is continuous
Thus, cotangent is continuous except at \( x=n p,(n \in Z) \)
We know that f is defined at all points of the real line.
Let k be a real number.
Case I: \( \mathrm{k} < 0 \),
Then \( \mathrm{f}(\mathrm{k})=\frac{\sin k}{k} \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}\left(\frac{\sin x}{x}\right)=\frac{\sin k}{k}\)
\(=\lim _{x \rightarrow k} f(x)=f(k)\)
Thus, f is continuous at all points \(x\) that is \( x < 0 \).
Case II: \( \mathrm{k} > 0 \),
Then \( \mathrm{f}(\mathrm{k})=\mathrm{c}+1 \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}(x+1)=\mathrm{k}+1\)
\(=\lim _{x \rightarrow k}(x)=f(k)\)
Thus, f is continuous at all points \(x\) that is \( x > 0 \).
Case III: \( \mathrm{k}=0 \)
Then \( \mathrm{f}(\mathrm{k})=\mathrm{f}(0)=0+1=1 \)
\(\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(\frac{\sin x}{x}\right)=1\)
\(\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(x+1)=1\)
\(=\lim _{x \rightarrow k^{-}} f(x)=\lim _{x \rightarrow k^{+}} f(x)=f(x)\)
Hence, \( f \) is continuous at \( x=0 \).
Therefore, f is continuous at all points of the real line
We know that f is defined at all points of the real line.
Let k be a real number.
Case I: \( \mathrm{k} \neq 0 \),
Then \( \mathrm{f}(\mathrm{k})=\mathrm{k}^{2} \sin \frac{1}{k} \)
\(\lim _{x \rightarrow k} f(x)=\lim _{x \rightarrow k}\left(x^{2} \sin \frac{1}{x}\right)=\mathrm{k}^{2} \sin \frac{1}{k}\)
\(\therefore \lim _{x \rightarrow k} f(x)=f(k)\)
Thus, f is continuous at all points \(x\) that is \( x \neq 0 \).
Case II: \( \mathrm{k}=0 \)
Then \( f(k)=f(0)=0 \)
\(\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(x^{2} \sin \frac{1}{x}\right)=\lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right)\)
We know that \( -1 \leq x \leq 1, x \neq 0 \)
\(\Rightarrow x^{2} \leq x^{2} \sin \frac{1}{x} \leq 0\)
\(\Rightarrow \lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right)=0\)
\(\Rightarrow \lim _{x \rightarrow 0^{-}} f(x)=0\)
Similarly, \( \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(x^{2} \sin \frac{1}{x}\right)=\lim _{x \rightarrow 0}\left(x^{2} \sin \frac{1}{x}\right)=0 \)
\(\lim _{x \rightarrow 0^{-}} f(x)=f(0)=\lim _{x \rightarrow 0^{+}} f(x)\)
Therefore, f is continuous at \( x=0 \).
Therefore, f has no point of discontinuity.
\( f(x)=\left\{\begin{array}{ll}\sin x-\cos x, & \text { if } x \neq 0 \\ -1, & \text { if } x=0\end{array}\right. \)
\(f(x)=\left\{\begin{array}{ll}\sin x-\cos x, & \text { if } x \neq 0 \\-1, & \text { if } x=0\end{array}\right.\)
Lef's find the left hand and right hand limits at \( x=0 \).
\( \begin{array}{l}\text { At } x=0 \text {, L.H.L. }=\lim _{x \rightarrow 0{-}} f(x)=\lim _{h \rightarrow 0}(0-h)=\lim _{h \rightarrow 0} f(-h) \\ \Rightarrow \lim _{t \rightarrow 0} \sin (-h)-\cos (-h)=\lim _{h \rightarrow 0}(-\sin h-\cos h)=-0-1=-1\end{array} \)
\( \begin{array}{l}\text { R.H.L. }=\lim _{x \rightarrow 0^{\prime}} f(x)=\lim _{h \rightarrow 0}(0+h)=\lim _{h \rightarrow 0} f(h) \\ \Rightarrow \lim _{h \rightarrow 0} \sin (h)-\cos (h)=\lim _{h \rightarrow 0}(\sin h-\cos h)=0-1=-1 \\ \text { And. given } f(0)=-1\end{array} \)
Thus, \( \lim _{x \rightarrow} f(x)=\lim _{f \rightarrow} f(x)=f(0) \)
Therefore, \( f(x) \) is continuous at \( x=0 \).
\( \mathrm{f}(x)=\left\{\begin{array}{c}\frac{k \cos x}{\pi-2 x}, \text { if } f \neq \frac{\pi}{2} \\ \text { at } x=\frac{\pi}{2} \\ 3, \text { if } x=\frac{\pi}{2}\end{array}\right. \)
Also, it is given that function f is continuous at \( x=\frac{\pi}{2} \),
So, if \( f \) is defined at \( x=\frac{\pi}{2} \) and if the value of the \( f \) at \( x= \) equals the limit of \( \frac{\pi}{2} \mathrm{f} \) at \( x=\frac{\pi}{2} \).
We can see that f is defined at \( x=\frac{\pi}{2} \) and \( \mathrm{f}\left(\frac{\pi}{2}\right)=3 \)
\(\lim _{x \rightarrow \frac{\pi}{2}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}} \frac{k \cos x}{\pi-2 x}\)
Now, let put \( x=\frac{\pi}{2}+h \)
Then, \( x \rightarrow \frac{\pi}{2}=\mathrm{h} \rightarrow 0 \therefore \lim _{x \rightarrow \frac{\pi}{2}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}} \frac{k \cos x}{\pi-2 x}=\lim _{h \rightarrow 0} \frac{k \cos \left(\frac{\pi}{2}+h\right)}{\pi-2\left(\frac{\pi}{2}+h\right)} \)
\(=k \lim_{h \rightarrow 0} \frac{-\sin h}{-2 h}=\frac{k}{2} \lim _{h \rightarrow 0} \frac{-\sin h}{-2 h}=\frac{k}{2} \cdot 1=\frac{k}{2}\)
\(\therefore \lim _{x \rightarrow \frac{\pi}{2}} f(x)=f\left(\frac{\pi}{2}\right)\)
\(\Rightarrow \frac{k}{2}=3\)
\(\Rightarrow \mathrm{k}=6\)
Therefore, the value of k is 6 .
\(\mathrm{f}(x)=\left\{\begin{array}{c}
k x^{2}, \text { if } x \leq 2 \\
\text { at } x=2 \\
3, \text { if } x > 2
\end{array}\right.\)
Also, it is given that function f is continuous at \( x=2 \),
So, if \( f \) is defined at \( x=2 \) and if the value of the \( f \) at \( x=2 \) equals the limit of f at \( x=2 \).
We can see that f is defined at \( x=2 \) and
\(\mathrm{f}(2)=\mathrm{k}(2)^{2}=4 \mathrm{k}\)
\(\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(2)\)
\(\Rightarrow \lim _{x \rightarrow 2^{-}}\left(k x^{2}\right)=\lim _{x \rightarrow 0^{+}}(3)\)
\(\Rightarrow \mathrm{k} \times 2^{2}=3=4 \mathrm{k}\)
\(\Rightarrow 4 \mathrm{k}=3=4 \mathrm{k}\)
\(\Rightarrow 4 \mathrm{k}=3\)
\(\Rightarrow \mathrm{k}=\frac{3}{4}\)
Therefore, the required value of k is \( \frac{3}{4} \).
\(\mathrm{f}(x)=\left\{\begin{array}{c}
k x+1, \text { if } x \leq \pi \\
\cos x, \text { if } x > \pi
\end{array} \text { at } x=\pi\right.\)
Also, it is given that function f is continuous at \( x=\mathrm{k} \),
So, if \( f \) is defined at \( x=p \) and if the value of the \( f \) at \( x=k \) equals the limit of \( f \) at \( x=k \).
We can see that f is defined at \( x=\mathrm{p} \) and
\(\mathrm{f}(\pi)=\mathrm{k} \pi+1\)
\(\lim _{x \rightarrow \pi^{-}} f(x)=\lim _{x \rightarrow \pi^{+}} f(x)=f(\pi)\)
\(\Rightarrow \lim _{x \rightarrow \pi^{-}}(k x+1)=\lim _{x \rightarrow \pi^{+}}(\cos x)=\mathrm{k} \pi+1\)
\(\Rightarrow \mathrm{k} \pi+1=\cos \pi=\mathrm{k} \pi+1\)
\(\Rightarrow \mathrm{k} \pi+1=-1=\mathrm{k} \pi+1\)
\(\Rightarrow \mathrm{k}=-\frac{2}{\pi}\)
Therefore, the required value of k is \( -\frac{2}{\pi} \).
\(\mathrm{f}(x)=\left\{\begin{array}{l}
k x+1, \text { if } x \leq 5 \\
3 x-5, \text { if } x > 5
\end{array} \text { at } x=5\right.\)
Also, it is given that function f is continuous at \( x=5 \),
So, if \( f \) is defined at \( x=5 \) and if the value of the \( f \) at \( x=5 \) equals the limit of f at \( x=5 \).
We can see that f is defined at \( x=5 \) and
\(\mathrm{f}(5)=\mathrm{k}x+1=5 \mathrm{k}+1\)
\(\lim _{x \rightarrow \pi^{-}} f(x)=\lim _{x \rightarrow \pi^{+}} f(x)=f(\pi)\)
\(=\lim _{x \rightarrow 5^{-}}(k x+1)=\lim _{x \rightarrow 5^{+}}(3 x-5)=5 \mathrm{k}+1\)
\(\Rightarrow 5 \mathrm{k}+1=15-5=5 \mathrm{k}+1\)
\(\Rightarrow 5 \mathrm{k}+1=10\)
\(\Rightarrow 5 \mathrm{k}=9\)
\(\Rightarrow \mathrm{k}=\frac{9}{5}\)
Therefore, the required value of k is \( \frac{9}{5} \).
5, \text { if } x \leq 2 \\
a x+b, \text { if } 2 \leq x \leq 10 \text { is a continuous function. } \\
21, \text { if } x \geq 10
\end{array}\right.\)
5, \text { if } x \leq 2 \\
a x+b, \text { if } 2 \leq x \leq 10 \\
21, \text { if } x \geq 10
\end{array}\right.\)
We know that the given function f is defined at all points of the real line.
Thus, f is continuous at \( x=2 \), we get,
\(\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)\)
\(\Rightarrow \lim _{x \rightarrow 2^{-}}(5)=\lim _{x \rightarrow 2^{+}}(a x+b)=5\)
\(\Rightarrow 5=2 \mathrm{a}+\mathrm{b}=5\)
\(\Rightarrow 2 \mathrm{a}+\mathrm{b}=5 \ldots(1)\)
Thus, f is continuous at \( x=10 \), we get,
\(\lim _{x \rightarrow 10^{-}} f(x)=\lim _{x \rightarrow 10^{+}} f(x)=f(10)\)
\(=\lim _{x \rightarrow 10^{-}}(a x+b)=\lim _{x \rightarrow 10^{+}}(21)=21\)
\(\Rightarrow 10 \mathrm{a}+\mathrm{b}=21=21\)
\(\Rightarrow 10 \mathrm{a}+\mathrm{b}=21 \ldots(2)\)
On subtracting eq(1.) from eq(2.), we get,
\(8 a=16\)
\(\Rightarrow a=2\)
Thus, putting \( \mathrm{a}=2 \) in eq(1.), we get,
\(2 \times 2+b=5\)
\(\Rightarrow 4+b=5\)
\(\Rightarrow b=1\)
Therefore, the values of \( a \) and \( b \) for which \( f \) is a continuous function are 2 and 1 resp.
This function \( f \) is defined for every real number and \( f \) can be written as the composition of two function as,
\( \mathrm{f}= \) goh, where, \( \mathrm{g}(x)=\cos x \) and \( \mathrm{h}(x)=x^{2} \)
First we have to prove that \( \mathrm{g}(x)=\cos x \) and \( \mathrm{h}(x)=x^{2} \) are continuous functions.
We know that g is defined for every real number.
Let k be a real number.
Then, \( g(k)=\cos k \)
Now, put \( x=\mathrm{k}+\mathrm{h} \)
If \( x \rightarrow k \), then \( h \rightarrow 0 \)
\(\lim _{x \rightarrow k} g(k)=\lim _{x \rightarrow k} \cos x\)
\(=\lim _{h \rightarrow 0} \cos (k+h)\)
\(=\lim _{h \rightarrow 0} \cos [\cos k \cos h-\sin k \sin h]\)
\(=\lim _{h \rightarrow 0} \cos k \cos h-\lim _{h \rightarrow 0} \sin k \sin h\)
\(=\operatorname{cosk} \cos 0-\operatorname{sink} \sin 0\)
\(=\cos \mathrm{k} \times 1-\sin \times 0\)
\(=\cos \mathrm{k}\)
\(\therefore \lim _{x \rightarrow k} g(x)=g(k)\)
Thus, \( \mathrm{g}(x)=\cos x \) is continuous function.
Now, \( h(x)=x^{2} \)
So, \( h \) is defined for every real number.
Let c be a real number, then \( \mathrm{h}(\mathrm{c})=\mathrm{c}^{2} \)
\(\lim _{x \rightarrow c} h(x)=\lim _{x \rightarrow c} x^{2}\)
\(\lim _{x \rightarrow c} h(x)=h(c)\)
Therefore, h is a continuous function.
We know that for real valued functions g and h,
Such that (fog) is continuous at c.
Therefore, \( \mathrm{f}(x)=(\mathrm{goh})(x)=\cos \left(x^{2}\right) \) is a continuous function.
The given function f is defined for real number and f can be written as the composition of two functions, as
\( \mathrm{f}= \) goh, where \( \mathrm{g}(x)=|x| \) and \( \mathrm{h}(x)=\cos x \)
First we have to prove that \( \mathrm{g}(x)=|x| \) and \( \mathrm{h}(x)=\cos x \) are continuous functions.
\( \mathrm{g}(x)=|x| \) can be written as
\(\mathrm{g}(x)=\left\{\begin{array}{c}
-x, \text { if } x < 0 \\
x, \text { if } x \geq 0
\end{array}\right.\)
Now, g is defined for all real number.
Let k be a real number.
Case I: If \( \mathrm{k} < 0 \),
Then \( g(k)=-k \)
And \( \lim _{x \rightarrow k} g(x)=\lim _{x \rightarrow k}(-x)=-\mathrm{k} \)
Thus, \( \lim _{x \rightarrow k} g(x)=g(k) \)
Therefore, g is continuous at all points x , i.e., \( x > 0 \)
Case II: If \( \mathrm{k} > 0 \),
Then \( \mathrm{g}(\mathrm{k})=\mathrm{k} \) and
\(\lim _{x \rightarrow k} g(x)=\lim _{x \rightarrow k} x=\mathrm{k}\)
Thus, \( \lim _{x \rightarrow k} g(x)=g(k) \)
Therefore, g is continuous at all points \(x \), i.e., \( x < 0 \).
Case III: If \( \mathrm{k}=0 \),
Then, \( \mathrm{g}(\mathrm{k})=\mathrm{g}(0)=0 \)
\(\lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{-}}(-x)=0\)
\(\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}}(x)=0\)
\(\therefore \lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{+}} g(x)=g(0)\)
Therefore, \(g\) is continuous at \( x=0 \)
From the above 3 cases, we get that g is continuous at all points.
\(h(x)=\cos x\)
We know that h is defined for every real number.
Let k be a real number.
\(\text { Now, put } x=\mathrm{k}+\mathrm{h}\)
\(\text { If } x \rightarrow \mathrm{k} \text {, then } \mathrm{h} \rightarrow 0\)
\(\lim _{x \rightarrow k} h(x)=\lim _{x \rightarrow k} \cos x\)
\(=\lim _{h \rightarrow 0} \cos (k+h)\)
\(=\lim _{h \rightarrow 0} \cos [\cos k \cos h-\sin k \sin h]\)
\(=\lim _{h \rightarrow 0} \cos k \cos h-\lim _{h \rightarrow 0} \sin k \sin h\)
\(=\cos k \cos 0-\operatorname{sink} \sin 0\)
\(=\cos \mathrm{k} \times 1-\sin \times 0\)
\(=\cos \mathrm{k}\)
\(\therefore \lim _{x \rightarrow k} h(k)=h(k)\)
Thus, \( \mathrm{h}(x)=\cos x \) is continuous function.
We know that for real valued functions \( g \) and \( h \), such that (goh) is defined at \( k \), if \( g \) is continuous at \( k \) and if \( f \) is continuous at \( g(k) \),
Then (fog) is continuous at k .
Therefore, \( \mathrm{f}(x)=(\mathrm{gof})(x)=\mathrm{g}(\mathrm{h}(x))=\mathrm{g}(\cos x)=|\cos x| \) is a continuous function.
The given function f is defined for real number and f can be written as the composition of two functions, as
\( \mathrm{f}= \) goh, where \( \mathrm{g}(x)=|x| \) and \( \mathrm{h}(x)=\sin x \)
First we have to prove that \( \mathrm{g}(x)=|x| \) and \( \mathrm{h}(x)=\sin x \) are continuous functions.
\( \mathrm{g}(x)=|x| \) can be written as
\(\mathrm{g}(x)=\left\{\begin{array}{c}
-x, \text { if } x < 0 \\
x, \text { if } x \geq 0
\end{array}\right.\)
Now, g is defined for all real number.
Let k be a real number.
Case I: If \( \mathrm{k} < 0 \),
Then \( g(k)=-k \)
And \( \lim _{x \rightarrow k} g(x)=\lim _{x \rightarrow k}(-x)=-\mathrm{k} \)
Thus, \( \lim _{x \rightarrow k} g(x)=g(k) \)
Therefore, \(g\) is continuous at all points \(x \), i.e., \( x > 0 \)
Case II: If \( \mathrm{k} > 0 \),
Then \( \mathrm{g}(\mathrm{k})=\mathrm{k} \) and
\(\lim _{x \rightarrow k} g(x)=\lim _{x \rightarrow k} x=\mathrm{k}\)
Thus, \( \lim _{x \rightarrow k} g(x)=g(k) \)
Therefore, \(g\) is continuous at all points \(x \), i.e., \( x < 0 \).
Case III: If \( \mathrm{k}=0 \),
Then, \( \mathrm{g}(\mathrm{k})=\mathrm{g}(0)=0 \)
\(\lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{-}}(-x)=0\)
\(\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}}(x)=0\)
\(\therefore \lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{+}} g(x)=g(0)\)
Therefore, g is continuous at \( x=0 \)
From the above 3 cases, we get that g is continuous at all points.
\(h(x)=\sin x\)
We know that h is defined for every real number.
Let k be a real number.
Now, put \( x=\mathrm{k}+\mathrm{h} \)
If \( x \rightarrow k \), then \( h \rightarrow 0 \)
\(\lim _{x \rightarrow k} h(x)=\lim _{x \rightarrow k} \sin x\)
\(=\lim _{h \rightarrow 0} \sin (k+h)\)
\(=\lim _{h \rightarrow 0}[\sin k \cos h+\cos k \sin h]\)
\(=\lim _{h \rightarrow 0} \sin k \cos h+\lim _{h \rightarrow 0} \cos k \sin h\)
\(=\sin k \cos 0+\cos k \sin 0\)
\(=\sin k\)
\(\therefore \lim _{x \rightarrow k} h(x)=g(k)\)
Thus, \( \mathrm{h}(x)=\cos x \) is continuous function.
We know that for real valued functions \( g \) and \( h \), such that (goh) is defined at \( k \), if \( g \) is continuous at \( k \) and if \( f \) is continuous at \( g(k) \),
Then (fog) is continuous at k .
Therefore, \( \mathrm{f}(x)=(\mathrm{gof})(x)=\mathrm{g}(\mathrm{h}(x))=\mathrm{g}(\sin x)=|\sin x| \) is a continuous function.
The given function f is defined for real number and f can be written as the composition of two functions, as
\( \mathrm{f}= \) goh, where \( \mathrm{g}(x)=|x| \) and \( \mathrm{h}(x)=|x+1| \)
Then, \( \mathrm{f}=\mathrm{g}-\mathrm{h} \)
First we have to prove that \( \mathrm{g}(x)=|x| \) and \( \mathrm{h}(x)=|x+1| \) are continuous functions.
\( \mathrm{g}(x)=|x| \) can be written as
\(\mathrm{g}(x)=\left\{\begin{array}{c}
-x, \text { if } x < 0 \\
x, \text { if } x \geq 0
\end{array}\right.\)
Now, \( g \) is defined for all real number.
Let k be a real number.
Case I: If \( \mathrm{k} < 0 \),
Then \( g(k)=-k \)
And \( \lim _{x \rightarrow k} g(x)=\lim _{x \rightarrow k}(-x)=-\mathrm{k} \)
Thus, \( \lim _{x \rightarrow k} g(x)=g(k) \)
Therefore, \(g\) is continuous at all points \(x \), i.e., \( x > 0 \)
Case II: If \( \mathrm{k} > 0 \),
Then \( \mathrm{g}(\mathrm{k})=\mathrm{k} \) and
\(\lim _{x \rightarrow k} g(x)=\lim _{x \rightarrow k} x=\mathrm{k}\)
Thus, \( \lim _{x \rightarrow k} g(x)=g(k) \)
Therefore, \(g\) is continuous at all points \(x \), i.e., \( x < 0 \).
Case III: If \( \mathrm{k}=0 \),
Then, \( \mathrm{g}(\mathrm{k})=\mathrm{g}(0)=0 \)
\(\lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{-}}(-x)=0\)
\(\lim _{x \rightarrow 0^{+}} g(x)=\lim _{x \rightarrow 0^{+}}(x)=0\)
\(\therefore \lim _{x \rightarrow 0^{-}} g(x)=\lim _{x \rightarrow 0^{+}}(x)=0\)
Therefore, \(g\) is continuous at \( x=0 \)
From the above 3 cases, we get that \(g\) is continuous at all points.
\( \mathrm{g}(x)=|x+1| \) can be written as
\(g(x)=\left\{\begin{array}{c}
-(x+1), \text { if } x < -1 \\
x+1, \text { if } x \geq-1
\end{array}\right.\)
Now, \(h\) is defined for all real number.
Let k be a real number.
Case I: If \( \mathrm{k} < -1 \),
Then \( h(k)=-(k+1) \)
And \( \lim _{x \rightarrow k} h(x)=\lim _{x \rightarrow k}[-(x+1)]=-(\mathrm{k}+1) \)
Thus, \( \lim _{x \rightarrow k} h(x)=h(k) \)
Therefore, \(h\) is continuous at all points \(x \), i.e., \( x < -1 \)
Case II: If \( \mathrm{k} > -1 \),
Then \( \mathrm{h}(\mathrm{k})=\mathrm{k}+1 \) and
\(\lim _{x \rightarrow k} h(x)=\lim _{x \rightarrow k}(x+1)=\mathrm{k}+1\)
Thus, \( \lim _{x \rightarrow k} h(x)=h(k) \)
Therefore, \(h\) is continuous at all points \(x \), i.e., \( x > -1 \).
Case III: If \( \mathrm{k}=-1 \),
Then, \( \mathrm{h}(\mathrm{k})=\mathrm{h}(-1)=-1+1=0 \)
\(\lim _{x \rightarrow 1^{-}} h(x)=\lim _{x \rightarrow 1^{-}}[-(x+1)]=-(1+1)=0\)
\(\lim _{x \rightarrow 1^{+}} h(x)=\lim _{x \rightarrow 1^{+}}(x+1)=(-1+1)=0\)
\(\therefore \lim _{x \rightarrow 1^{-}} h(x)=\lim _{x \rightarrow 1^{+}} h(x)=h(-1)\)
Therefore, \(g\) is continuous at \( x=-1 \)
From the above 3 cases, we get that h is continuous at all points.
Hence, \(g\) and \(h\) are continuous function.
Therefore, \( \mathrm{f}=\mathrm{g}-\mathrm{h} \) is also a continuous function.