Ex 5.6 Class 12 Maths Ncert Solutions

Ex 5.6 class 12 maths ncert solutions | class 12 maths exercise 5.6 | class 12 maths ncert solutions chapter 5 exercise 5.6 | exercise 5.6 class 12 maths ncert solutions | continuity and differentiability class 12 ncert solutions

Looking for Ex 5.6 Class 12 Maths NCERT Solutions? This is the perfect place to find detailed, step-by-step answers for all the problems in Exercise 5.6 Class 12 Maths, from Chapter 5 – Continuity and Differentiability. These NCERT solutions are designed to help you understand complex concepts such as the second-order derivative and the application of the chain rule. All solutions strictly follow the CBSE syllabus, making them ideal for board exam preparation and regular practice. With these Class 12 Maths NCERT Solutions Chapter 5 Exercise 5.6, you can confidently tackle advanced differentiation problems and boost your grasp on calculus.

ex 5.6 class 12 maths ncert solutions
exercise 5.6 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.6 || continuity and differentiability class 12 ncert solutions || class 12 maths exercise 5.6 || ex 5.6 class 12 maths ncert solutions
Download the Math Ninja App Now

Exercise 5.6

1 . If \(x\) and \(y\) are connected parametrically by the equations given in without eliminating the parameter, Find \(\frac{dy}{dx}\).
\(x=2 a t^{2}, y=a t^{4}\)
Answer
It is given that
\(x=2 a t^{2}, y=a t^{4}\)
So, now
\(\frac{d x}{d t}=\frac{d\left(2 a t^{2}\right)}{d t}\)
\(=2 \mathrm{a} \frac{d\left(t^{2}\right)}{d t}\)
\(=2 \mathrm{a} \cdot 2 \mathrm{t}\)
\(=4 \mathrm{at} \ldots (1)\)
And
\( \frac{d y}{d t}=\frac{d\left(a t^{4}\right)}{d t} \)
\( =\mathrm{a} \frac{d\left(t^{4}\right)}{d t} \)
\( =\mathrm{a} \cdot 4 . \mathrm{t}^{3} \)
\( =4 a t^{3} \ldots(2)\)
Therefore, form equation (1) and (2). we get
\(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{4 a t^{3}}{4 a t}=t^{2}\)
Hence, the value of \( \frac{d y}{d x} \) is \( \mathrm{t}^{2} \)
2 . If \( x \) and \( y \) are connected parametrically by the equations given in without eliminating the parameter, Find \(\frac{dy}{dx}\).
\(x=\mathrm{a} \cos \theta, y=\mathrm{b} \cos \theta\)
Answer
It is given that
\(x=a \cos \theta, y=b \cos \theta\)
Then, we have
\( \frac{d x}{d \theta}=\frac{d(\operatorname{acos} \theta)}{d \theta} \)
\( =\mathrm{a}(-\sin \theta) \)
\(=-\mathrm{a} \sin \theta \ldots(1)\)
\(\frac{d y}{d \theta}=\frac{d(b \cos \theta)}{d \theta}\)
\(=\mathrm{b}(-\sin \theta)\)
\(=-\mathrm{b} \sin \theta \ldots (2)\)
From equation (1) and (2), we get
\(\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-b \sin \theta}{-a \sin \theta}=\frac{b}{a}\)
Hence, the value of \( \frac{d y}{d x} \) is \( \frac{b}{a} \)
3 . If \( x \) and \( y \) are connected parametrically by the equations given in without eliminating the parameter, Find \(\frac{dy}{dx}\).
\(x=\sin t, y=\cos 2 t\)
Answer
It is given that
\(x=\sin t, y=\cos 2 t\)
Then, we have
\(\frac{d x}{d t}=\frac{d(\sin t)}{d t}\)
\(=\cos t \ldots (1)\)
\(\frac{d y}{d x}=\frac{d(\cos 2 t)}{d t}=-\sin 2 t \frac{d(2 t)}{d t}\)
\(=-2 \sin 2 t \ldots (2)\)
So, equation (1) and (2), we get
\(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{-2 \sin 2 t}{\cos t}\)
\(=\frac{-2.2 \sin t \cos t}{\cos t}, \text { Since } \sin 2 t=2 \sin t \cos t\)
\(=-4 \sin t\)
Hence, the value of \( \frac{d y}{d x} \) is \( -4 \sin t \)
4 . If \(x\) and \(y\) are connected parametrically by the equations given in without eliminating the parameter, Find \(\frac{ dy }{ dx }.\)
\(x=4 \mathrm{t}, y=\frac{4}{\mathrm{t}}\)
Answer
It is given that
\(x=4 \mathrm{t}, y=\frac{4}{t}\)
Then, we have
\(\frac{d x}{d t}=\frac{d(4 t)}{d t}\)
\(=4 \ldots \ldots (1)\)
\(\frac{d y}{d t}=\frac{d\left(\frac{4}{t}\right)}{d t}=4 \frac{-1}{t^{2}}=\frac{-4}{t^{2}}\ldots(2)\)
Therefore, from equation (1) and (2), we get
\(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\frac{-4}{t^{2}}}{4}=\frac{-1}{t^{2}}=-4 \sin \mathrm{t}\)
Hence, the value of \( \frac{d y}{d x} \) is \( \frac{-1}{t^{2}} \)
exercise 5.6 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.6 || continuity and differentiability class 12 ncert solutions || class 12 maths exercise 5.6 || ex 5.6 class 12 maths ncert solutions
Download the Math Ninja App Now
5. If \( x \) and \( y \) are connected parametrically by the equations given in without eliminating the parameter, Find \(\frac{ dy }{ dx }\).
\(x=\cos \theta-\cos 2 \theta, y=\sin \theta-\sin 2 \theta\)
Answer
It is given that
\(x=\cos \theta-\cos 2 \theta, y=\sin \theta-\sin 2 \theta\)
Then, we have
\(\frac{d x}{d \theta}=\frac{d(\cos \theta-\cos 2 \theta)}{d \theta}\)
\(=\frac{d(\cos \theta)}{d \theta}-\frac{d(\cos 2 \theta)}{d \theta}\)
\(=-\sin \theta-(-2 \sin 2 \theta)\)
\(=2 \sin 2 \theta-\sin \theta \ldots(1)\)
\(\frac{d y}{d \theta}=\frac{d(\sin \theta-\sin \theta)}{d \theta}\)
\(=\frac{d(\sin \theta)}{d \theta}-\frac{d(\sin \theta)}{d \theta}\)
\(=\cos \theta-2 \cos 2 \theta\)
\(=-b \sin \theta \ldots (2)\)
From equation (1) and (2), we get,
\(\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\cos \theta-2 \cos 2 \theta}{2 \sin 2 \theta-\sin \theta}\)
Hence, the value of \( \frac{d y}{d x} \) is \( \frac{\cos \theta-2 \cos 2 \theta}{2 \sin 2 \theta-\sin \theta} \)
6 . If \(x\) and \(y\) are connected parametrically by the equations given in without eliminating the parameter, Find \(\frac{ dy }{ dx }\).
\(x=a(\theta-\sin \theta), y=a(1+\cos \theta)\)
Answer
It is given that
\(x=a(\theta-\sin \theta), y=a(1+\cos \theta)\)
Then, we have
\(\frac{d x}{d \theta}=a\left[\frac{d(\theta)}{d \theta}-\frac{d(\sin \theta)}{d \theta}\right]\)
\(=\mathrm{a}(1-\cos \theta) \ldots(1)\)
\(\frac{d y}{d \theta}=a\left[\frac{d(1)}{d \theta}-\frac{d(\cos \theta)}{d \theta}\right]\)
\(=\mathrm{a}[0+(-\sin \theta)]\)
\(=-\mathrm{a} \sin \theta \ldots (2)\)
From equation (1) and (2), we get
\(\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-a \sin \theta}{a(1-\cos \theta)}\)
\(=\frac{-2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin ^{2} \frac{\theta}{2}}\)
\(=\frac{-\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}=-\cot \frac{\theta}{2}\)
Hence, the value of \( \frac{d y}{d x} \) is \( -\cot \frac{\theta}{2} \)
exercise 5.6 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.6 || continuity and differentiability class 12 ncert solutions || class 12 maths exercise 5.6 || ex 5.6 class 12 maths ncert solutions
Download the Math Ninja App Now
8 . If \(x\) and \(y\) are connected parametrically by the equations given in without eliminating the parameter, Find \(\frac{ dy }{ dx }\).
\(x=a\left(\cos t+\log \tan \frac{t}{2}\right) y=a \sin t\)
Answer
It is given that
\(x=a\left(\cos t+\log \tan \frac{t}{2}\right) y=a \sin t\)
Then, we have
\(\frac{d x}{d t}=a\left[\frac{d(\cos t)}{d t}+\frac{d\left(\log \tan \frac{t}{2}\right)}{d t}\right]\)
\(=a\left[-\sin t+\frac{1}{\tan \frac{t}{2}} \frac{d\left(\tan \frac{t}{2}\right)}{d t}\right]\)
\(=a\left[-\sin t+\cot \frac{t}{2} \cdot \sec ^{2} \frac{t}{2} \frac{d\left(\frac{t}{2}\right)}{d t}\right]\)
\(=a\left[-\sin t+\frac{\cos \frac{t}{2}}{\sin \frac{t}{2}} \times \frac{1}{\cos ^2 \frac{t}{2}} \times \frac{1}{2}\right]\)
\(=a\left[-\sin t+\frac{2}{2 \sin \frac{t}{2} \cos \frac{t}{2}}\right]\)
\(=a\left[-\sin t+\frac{1}{\sin t}\right]\)
\(=a\left[\frac{1-\sin ^{2} t}{\sin t}\right]\)
\(=a \frac{\cos ^{2} t}{\sin t} \ldots (1) \)
\(\frac{d y}{d t}=a \frac{d(\sin t)}{d t}\)
\(=\mathrm{a} \cos \mathrm{t} \ldots (2)\)
From equation (1) and (2), we get
\(\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{a \cos t}{\left(a \frac{\cos ^{2} t}{\sin t}\right)}\)
\(=\frac{\sin t}{\cos t}\)\(=\tan t\)
Hence, the value of \( \frac{d y}{d x} \) is \( \tan \mathrm{t} \)
9 . If \( x \) and \( y \) are connected parametrically by the equations given in without eliminating the parameter, Find \(\frac{ dy }{ dx }\).
\(x=a \sec \theta, y=b \tan \theta\)
Answer
It is given that
\(x=\mathrm{a} \sec \theta, y=\mathrm{b} \tan \theta\)
Then, we have
\(\frac{d x}{d \theta}=a \frac{d(\sec \theta)}{d \theta}\)
\(=a \sec \theta \tan \theta \ldots(1)\)
\(\frac{d y}{d \theta}=b \frac{d(\tan \theta)}{d \theta}\)
\(=b \sec 2 \theta \ldots (2)\)
From equation (1) and (2), we get,
\(\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{b \sec ^{2} \theta}{\operatorname{asec} \theta \tan \theta}\)
\(=\frac{b}{a} \sec \theta \cot \theta\)
\(=\frac{b \cos \theta}{a \cos \theta \sin \theta}\)
\(=\frac{b}{a} \times \frac{1}{\sin \theta}\)
\(=\frac{b}{a} \operatorname{cosec} \theta\)
Hence, the value of \( \frac{d y}{d x} \) is \( \operatorname{cosec} \theta \)
10. If \( x \) and \( y \) are connected parametrically by the equations given in without eliminating the parameter, Find \(\frac{ dy }{ dx }\).
\(x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)\)
Answer
It is given that
\(x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)\)
Then, we have
\(\frac{d x}{d \theta}=a\left[\frac{d(\cos \theta)}{d \theta}+\frac{d(\theta \sin \theta)}{d \theta}\right]\)
\(=a\left[-\sin \theta+\frac{\theta d(\sin \theta)}{d \theta}+\sin \theta \frac{d(\theta)}{d \theta}\right]\)
\(=\mathrm{a}[-\sin \theta+\theta \cos \theta+\sin \theta]\)
\(=\mathrm{a} \theta \cos \theta \ldots(1)\)
\(\frac{d y}{d \theta}=a\left[\frac{d(\sin \theta)}{d \theta}-\frac{d(\theta \cos \theta)}{d \theta}\right]\)
\(=a\left[\cos \theta-\left\{\frac{\theta d(\cos \theta)}{d \theta}+\cos \theta \frac{d(\theta)}{d \theta}\right\}\right]\)
\(=\mathrm{a}[\cos \theta+\theta \sin \theta-\cos \theta]\)
\(=\mathrm{a} \theta \sin \theta \ldots(2)\)
From (1) and (2) we get,
\(\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{a \theta \sin \theta}{a \theta \cos \theta}\)
\(=\tan \theta\)
Hence, the value of \( \frac{d y}{d x} \) is \( \tan \theta \)
11. If \( x \) and \( y \) are connected parametrically by the equations given in without eliminating the parameter, Find \( \frac{ d y }{ d x } \).
If, \( x=\sqrt{a^{\sin ^{-1} t}}, y=\sqrt{a^{\cos ^{-1} t}} \) show that \( \frac{d y}{d x}=-\frac{y}{x} \)
Answer
It is given that
\(x=\sqrt{a^{\sin ^{-1} t}}, y=\sqrt{a^{\cos ^{-1} t}}\)
Now,
\(x=\sqrt{a^{\sin ^{-1} t}}=x=\left(a^{\sin ^{-1} t}\right)^{\frac{1}{2}}=x=a^{\frac{1}{2} \sin ^{-1} t}\)
Similarly, \( y=\sqrt{a^{\cos ^{-1} t}}=y\left(a^{\cos ^{-1} t}\right)^{\frac{1}{2}}=y=a^{\frac{1}{2} \cos ^{-1} t} \)
Let us consider,
\(x=a^{\frac{1}{2} \sin ^{-1} t}\)
Taking Log on both sides, we get
\(\log x=\frac{1}{2} \sin^{-1} t \log a\)
Therefore, \( \frac{1}{x} \cdot \frac{d x}{d t}=\frac{1}{2} \log a \cdot \frac{d\left(\sin ^{-1} t\right)}{d t} \)
\(=\frac{d x}{d t}=\frac{x}{2} \log a \cdot \frac{1}{\sqrt{1-t^{2}}}\)
\(=\frac{d x}{d t}=\frac{x \log a}{2 \sqrt{1-t^{2}}} \ldots(1)\)
Now, Consider
\(y=a^{\frac{1}{2} \cos ^{-1} t}\)
Taking Log on both sides, we get
\(\log y=\frac{1}{2} \cos ^{-1} t \log a\)
Therefore, \( \frac{1}{y} \cdot \frac{d y}{d t}=\frac{1}{2} \log a \cdot \frac{d\left(\cos ^{-1} t\right)}{d t} \)
\(=\frac{d y}{d t}=\frac{y}{2} \log a \cdot \frac{-1}{\sqrt{1-t^{2}}}\)
\(=\frac{d y}{d t}=\frac{-y \log a}{2 \sqrt{1-t^{2}}} \ldots(2)\)
So, from equation (1) and (2), we get
\(\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\frac{-y \log a}{2 \sqrt{1-t^{2}}}}{\frac{x \log a}{2 \sqrt{1-t^{2}}}}=-\frac{y}{x}\)
Therefore, L.H.S. \( = \) R.H.S.
Hence Proved
exercise 5.6 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.6 || continuity and differentiability class 12 ncert solutions || class 12 maths exercise 5.6 || ex 5.6 class 12 maths ncert solutions
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top