Ex 6.5 class 12 maths ncert solutions || class 12 maths exercise 6.5 || class 12 maths ncert solutions chapter 6 exercise 6.5 || exercise 6.5 class 12 maths ncert solutions || application of derivatives class 12 ncert solutions(English Medium)
NCERT Solutions for Class 12 Maths – Exercise 6.5 (Application of Derivatives)
Exercise 6.5 of Class 12 Maths NCERT Solutions focuses on the chapter Application of Derivatives, a crucial topic in calculus. These solutions are carefully designed to help students understand concepts like increasing and decreasing functions, maxima and minima, and approximation methods. Whether you’re looking for step-by-step explanations or preparing for board exams, the Class 12 Maths Exercise 6.5 NCERT solutions are extremely helpful. This content is tailored for English Medium students and strictly follows the CBSE syllabus. Studying from these Class 12 Maths NCERT Solutions Chapter 6 Exercise 6.5 will strengthen your grasp on derivatives and their real-life applications, making problem-solving much easier.

exercise 6.5 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 6 exercise 6.5 || class 12 maths exercise 6.5 || application of derivatives class 12 ncert solutions || ex 6.5 class 12 maths ncert solutions
Exercise 6.5
Now, we can see that \( (2 x-1)^{2} \geq 0 \) for every \( x \in R \)
\( \Rightarrow \mathrm{f}(x)=(2 x-1)^{2}+3 \geq 3 \) for every \( x \in \mathrm{R} \)
The minimum value of f is attained when \( 2 x-1=0 \)
\(2 x-1=0\)
\(\Rightarrow x=\frac{1}{2}\)
Then, Minimum value of
\(\mathrm{f}=\mathrm{f}\left(\frac{1}{2}\right)=\left(2 \cdot \frac{1}{2}-1\right)^{2}+3=3\)
Therefore, function f does not have a maximum value.
Now, we can see that \( (3 x+2)^{2} \geq 0 \) for every \( x \in R \)
\( \Rightarrow \mathrm{f}(x)=(3 x+2)^{2}-2 \geq-2 \) for every \( x \in \mathrm{R} \)
The minimum value of \( f \) is attained when \( 3 x+2=0 \)
\(3 x+2=0\)
\(\Rightarrow \frac{-2}{3}\)
Then, Minimum value of
\(f=f\left(\frac{-2}{3}\right)=\left(3\left(\frac{-2}{3}\right)+2\right)^{2}-2=-2\)
Therefore, function \( f \) does not have a maximum value.
Now, we can see that \( (x-1)^{2} \geq 0 \) for every \( x \in R \)
\(\Rightarrow \mathrm{f}(x)=-(x-1)^{2}+10 \leq 10 \text { for every } x \in \mathrm{R}\)
The minimum value of \( f \) is attained when \( x-1=0 \)
\(x-1=0\)
\(\Rightarrow x=1\)
Then, Maximum value of \( \mathrm{f}=\mathrm{f}(1)=-(1-1)^{2}+10=10 \)
Therefore, function f does not have a minimum value.
Now,
\(x \in \mathbb{R}\)
\(\Rightarrow-\infty \leq x \leq \infty\)
\(\Rightarrow-\infty \leq x^{3} \leq \infty\)
\(\Rightarrow-\infty \leq x^{3}+1 \leq \infty\)
The function g neither has a maximum value nor a minimum value.
Now, we can see that \( |x+2| \geq 0 \) for every \( x \in R \)
\(\Rightarrow f(x)=|x+2|-1 \geq-1 \text { for every } x \in R\)
The minimum value of \( f \) is attained when \( |x+2|=0 \)
\(|x+2|=0\)
\(\Rightarrow x=-2\)
Then, Minimum value of \( f=f(-2)=|-2+2|-1=-1 \)
Therefore, function f does not have a maximum value.
Now, we can see that \( -|x+1| \leq 0 \) for every \( x \in R \)
\(\Rightarrow \mathrm{g}(x)=-|x+1|+3 \leq 3 \text { for every } x \in \mathrm{R}\)
The maximum value of f is attained when \( |x+1|=0 \)
\(|x+1|=0\)
\(\Rightarrow x=-1\)
Then, Maximum value of \( g=g(-1)=-|-1+1|+3=3 \)
Therefore, function f does not have a minimum value.
Now, we can see that \( -1 \leq \sin 2 x \leq 1 \)
\(\Rightarrow-1+5 \leq \sin 2 x+5 \leq 1+5\)
\(\Rightarrow 4 \leq \sin 2 x+5 \leq 6\)
Therefore, the maximum and minimum value of function \( h \) are 6 and 4 respectively.
Now, we can see that \( -1 \leq \sin 4 x \leq 1 \)
\(\Rightarrow 2 \leq \sin 4 x+3 \leq 4\)
\(\Rightarrow 2 \leq|\sin 4 x+3| \leq 4\)
Therefore, the maximum and minimum value of function h are 4 and 2 respectively.
Now, if a point \( x_{0} \) is closest to \(-1 \), then,
We find \( \frac{x_{0}}{2}+1 < x_{0}+1 \) for all \( x_{0} \in(-1,1) \)
Also, if a point \( x_{1} \) is closest to \(1 \), then,
We find \( x_{1}+1 < \frac{x_{1}+1}{2}+1 \) for all \( x_{1} \in(-1,1) \)
Therefore, the function \( \mathrm{h}(x )\) has neither maximum nor minimum value in \( (-1,1) \).
\(f(x)=x^{2}\)
\(\Rightarrow f^{\prime}(x)=2 x\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow x=0\)
\( \Rightarrow x=0 \) is the only critical point which could possibly be the point of local maxima or local minima of f .
\( \Rightarrow f^{\prime}(0)=2 \), which is positive.
Then, by second derivative test,
\( \Rightarrow x=0 \) is point of local maxima and local minima of f at \( x=0 \) is \( \mathrm{f}(0)= \) 0 .
\(g(x)=x^{3}-3 x\)
\(\Rightarrow g^{\prime}(x)=3 x^{2}-3\)
Now, \( g^{\prime}(x)=0 \)
\(\Rightarrow 3 x^{2}-3=0\)
\(\Rightarrow 3 x^{2}=3\)
\(\Rightarrow x=1\)
\(g^{\prime \prime}(x)=6 x\)
Now, \( g^{\prime}(1)=6 > 0 \)
and \( g^{\prime}(-1)=-6 < 0 \)
Then, by second derivative test,
\( \Rightarrow x=1 \) is point of local maxima and local minima of g at \( x=1 \) is \( g(1)=1^{3}-3=1-3=-2 \)
And, \( x=-1 \) is point of local maxima and local maximum value of \( g \) at \( x=-1 \) is
\(g(-1)=(-1)^{3}-3(-1)=-1+3=2\)
\(h(x)=\sin x+\cos x, 0 < x < \frac{\pi}{2}\)
\(\mathrm{~h}^{\prime}(x)=\cos x-\sin x\)
Now, \( h^{\prime}(x)=0 \)
\(\Rightarrow \cos x-\sin x=0\)
\(\Rightarrow \cos x=\sin x\)
\(\Rightarrow \tan x=1\)
\(=x=\frac{\pi}{4}\)
\(h^{\prime \prime}(x)=-\sin x-\cos x=-(\sin x+\cos x)\)
\(h^{\prime \prime}\left(\frac{\pi}{4}\right)=-\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)=-\frac{2}{\sqrt{2}}=-\sqrt{2} < 0\)
Then, by second derivative test,
\( \Rightarrow x=\frac{\pi}{4} \) is point of local maxima and local minima of h at \( x=\frac{\pi}{4} \) is \( \mathrm{h}\left(\frac{\pi}{4}\right)=\sin \frac{\pi}{4}+\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2} \)
exercise 6.5 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 6 exercise 6.5 || class 12 maths exercise 6.5 || application of derivatives class 12 ncert solutions || ex 6.5 class 12 maths ncert solutions
\(f(x)=\sin x-\cos x, 0 < x < 2 \pi\)
\(\mathrm{f}^{\prime}(x)=\cos x+\sin x\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow \cos x+\sin x=0\)
\(\Rightarrow \cos x=-\sin x\)
\(\Rightarrow \tan x=-1\)
\(\Rightarrow x=\frac{3 \pi}{4}, \frac{7 \pi}{4}, \in 2 \pi\)
\((x)=-\sin x+\cos x\)
\(f^{\prime \prime}\left(\frac{3 \pi}{4}\right)=-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=-\sqrt{2} < 0\)
\(f^{\prime \prime}\left(\frac{7 \pi}{4}\right)=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2} > 0\)
Then, by second derivative test,
\( \Rightarrow x=\frac{3 \pi}{4} \) is point of local maxima and the local maximum value of f at \( x=\frac{3 \pi}{4} \) is
\(f\left(\frac{3 \pi}{4}\right)=\sin \left(\frac{3 \pi}{4}\right)-\cos \left(\frac{3 \pi}{4}\right)=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}\)
And, \( \Rightarrow x=\frac{7 \pi}{4} \) is point of local minima and the local minimum value of f at \( x=\frac{7 \pi}{4} \) is
\(f\left(\frac{7 \pi}{4}\right)=\sin \frac{7 \pi}{4}-\cos \frac{7 \pi}{4}=-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=-\sqrt{2}\)
\(\Rightarrow \mathrm{f}^{\prime}(x)=3 x^{2}-12 x+9\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow 3 x^{2}-12 x+9=0\)
\(\Rightarrow 3(x-1)(x-3)=0\)
\(\Rightarrow x=1,3\)
\(\mathrm{~g}^{\prime \prime}(x)=6 x-12=6(x-2)\)
Now, \( f^{\prime}(1)=6(1-2)=-6 < 0 \)
and \( f^{\prime}(3)=6(3-2)=6 > 0 \)
Then, by second derivative test,
\( \Rightarrow x=1 \) is point of local maxima and local maximum of f at \( x=1 \) is \(f(1)=1^{3}-6+9+15=19\)
And,
\( x=3 \) is point of local minima and local minimum value of \( f \) at \( x=3 \) is \(f(3)=27-54+27+15=15\)
\(\mathrm{g}(x)=\frac{x}{2}+\frac{2}{x}, x > 0\)
\(\Rightarrow g^{\prime}(x)=\frac{1}{2}-\frac{2}{x^{2}}\)
\(\text { Now, } \mathrm{g}^{\prime}(x)=0\)
\(\Rightarrow \frac{1}{2}-\frac{2}{x^{2}}=0\)
\(\Rightarrow \frac{2}{x^{2}}=\frac{1}{2}\)
\(\Rightarrow x^{2}=4\)
\(\Rightarrow x= 2\)
Since \( x > 0 \), we take \( x=2 \)
\(g^{\prime}(x)=\frac{4}{x^{3}}\)
\(g^{\prime \prime}(2)=\frac{4}{2^{3}}=\frac{1}{2} > 0\)
Then, by second derivative test,
\( \Rightarrow x=2 \) is point of local minima and local minimum of \( g \) at \( x=2 \) is
\(g(2)=\frac{2}{2}+\frac{2}{2}=1+1=2\)
\(g(x)=\frac{1}{x^{2}+2}\)
\(\Rightarrow g^{\prime}(x)=\frac{-2 x}{\left(x^{2}+2\right)^{2}}=0\)
\(\Rightarrow x=0\)
Now, for values close to \( x=0 \) and to the left of 0 ,
\( \mathrm{g}^{\prime}(x) > 0 \).
Also, for values close to \( x=0 \) and to the right of 0 ,
\(g^{\prime}(x) < 0\)
Then, by first derivative test,
\( \Rightarrow x=0 \) is point of local maxima and local maximum of g at \( x=0 \) is
\(g(0)=\frac{1}{0+2}=\frac{1}{2}\)
\(\mathrm{f}(x)=x \sqrt{1-x} ; 0 < x < 1\)
\(\Rightarrow \mathrm{f}^{\prime}(x)=\sqrt{1-x}+x \frac{1}{2 \sqrt{1-x}}(-1)\)
\(\Rightarrow \sqrt{1-x}-\frac{1}{2 \sqrt{1-x}}\)
\(=\frac{2(1-x)-x}{2 \sqrt{1-x}}\)
\(=\frac{2-3 x}{2 \sqrt{1-x}}\)
\(\mathrm{f}^{\prime}(x)=0\)
\(\Rightarrow \frac{2-3 x}{2 \sqrt{1-x}}=0\)
\(\Rightarrow 2-3 x=0\)
\(\Rightarrow x=\frac{2}{3}\)
\(f^{\prime \prime}(x)=\frac{1}{2}\left[\frac{\sqrt{1-x}(-3)-(2-3 x)\left(\frac{-1}{2 \sqrt{1-x}}\right)}{1-x}\right]\)
\(=\left[\frac{\sqrt{1-x}(-3)+(2-3 x)\left(\frac{-1}{2 \sqrt{1-x}}\right)}{2(1-x)}\right]\)
\(=\left[\frac{-6(1-x)+(2-3 x)}{2(1-x)^{\frac{3}{2}}}\right]\)
\(=\frac{3 x-4}{4(1-x)^{\frac{3}{2}}}\)
\(f^{\prime \prime}\left(\frac{2}{3}\right)=\frac{2}{3} \sqrt{1-\frac{2}{3}}=\frac{2}{3} \sqrt{\frac{1}{3}}=\frac{2}{\sqrt[3]{3}}=\frac{2 \sqrt{3}}{9}\)
\(f(x)=e^{x}\)
\(\Rightarrow f^{\prime}(x)=e^{x}\)
Now, if \( \mathrm{f}^{\prime}(x)=0 \), then \( \mathrm{e}^{x}=0 \).
But, the exponential function can never assume 0 for any value of \(x \). Therefore, there does not exist \( c \in R \) such that \( f^{\prime}(c)=0 \)
Hence, function f does not have maxima or minima.
\(\mathrm{g}(x)=\log x\)
\(\Rightarrow g^{\prime}(x)=\frac{1}{x}\)
Since, \( \log x \) is defined for a positive number \(x \),
\( \mathrm{g}^{\prime}(x) > 0 \) for any \(x \).
Therefore, there does not exist \( c \in R \) such that \( f^{\prime}(c)=0 \)
Hence, function f does not have maxima or minima.
\(\mathrm{h}(x)=x^{3}+x^{2}+x+1\)
\(\Rightarrow \mathrm{h}^{\prime}(x)=3 x^{2}+2 x+1\)
\(\mathrm{~h}(x)=0\)
\(\Rightarrow 3 x^{2}+2 x+1=0\)
\(\Rightarrow x=\frac{-2 \pm 2 \sqrt{2 i}}{6}\)
\(\Rightarrow \frac{-1 \pm \sqrt{2 i}}{3}, \notin R\)
Therefore, there does not exist \( \mathrm{c} \in \mathrm{R} \) such that \( \mathrm{h}^{\prime}(\mathrm{c})=0 \)
Hence, function \( h \) does not have maxima or minima.
\(f(x)=x^{3}, x \in[-2,2]\)
\(\Rightarrow \mathrm{f}^{\prime}(x)=3 x^{2}\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow x=0\)
Now, we evaluate the value of \( f \) at critical point \( x=0 \) and at end points of the interval \( [-2,2] \).
\(\mathrm{f}(0)=0\)
\(\mathrm{f}(-2)=(-2)^{3}=-8\)
\(\mathrm{f}(2)=(2)^{3}=8\)
Therefore, we have the absolute maximum value of \( f \) on \( [-2,2] \) is 8 occurring at \( x=2 \).
And, the absolute minimum value of f on \( [-2,2] \) is \(-8\) occurring at \( x=-2 \).
\(\mathrm{f}(x)=\sin x+\cos x, x \in[0, \pi]\)
\(f^{\prime}(x)=\cos x-\sin x\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow \cos x-\sin x=0\)
\(\Rightarrow \cos x=\sin x\)
\(\Rightarrow \tan x=1\)
\(\Rightarrow x=\frac{\pi}{4}\)
Now, we evaluate the value of \( f \) at critical point \( x=\frac{\pi}{4} \) and at end points of the interval \( [0, \pi] \)
\(f^{\prime}\left(\frac{\pi}{4}\right)=\sin \frac{\pi}{4} \cos \frac{\pi}{4}=\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)=\frac{2}{\sqrt{2}}=\sqrt{2}\)
\(f(0)=\sin 0+\cos 0=0+1=1\)
\(f(\pi)=\sin \pi+\cos \pi=0-1=-1\)
Therefore, we have the absolute maximum value of f on \( [0, \pi] \) is \( \sqrt{2} \) occurring at \( x=\frac{\pi}{4} \).
And, the absolute minimum value of \( f \) on \( [0, \pi] \) is \(-1\) occurring at \( x=\pi \).
\(\mathrm{f}(x)=4 x-\frac{1}{2} x^{2}, x \in\left[-2, \frac{9}{2}\right]\)
\(\mathrm{f}(x)=4 x-\frac{1}{2} x^{2}, x \in\left[-2, \frac{9}{2}\right]\)
\(\Rightarrow f^{\prime}(x)=4-\frac{1}{2}(2 x)=4-x\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow x=4\)
Now, we evaluate the value of \( f \) at critical point \( x=0 \) and at end points of the interval \( \left[-2, \frac{9}{2}\right] \)
\(f(4)=16-\frac{1}{2}(16)=16-8=8\)
\(f(-2)=-8-\frac{1}{2}(4)=-8-2=-10\)
\(f\left(\frac{9}{2}\right)=4\left(\frac{9}{2}\right)-\frac{1}{2}\left(\frac{9}{2}\right)^{2}=18-\frac{81}{8}=18-10.125=7.875\)
Therefore, we have the absolute maximum value of f on \( \left[-2, \frac{9}{2}\right] \) is 8 occurring at \( x=4 \).
And, the absolute minimum value of \( f \) on \( \left[-2, \frac{9}{2}\right] \) is -10 occurring at \( x= \) -2 .
\(f(x)=(x-1)^{2}+3, x \in[-3,1]\)
\(\Rightarrow \mathrm{f}^{\prime}(x)=2(x-1)\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow 2(x-1)\)
\(\Rightarrow x=1\)
Now, we evaluate the value of \( f \) at critical point \( x=1 \) and at end points of the interval \( [-3,1] \).
\(\mathrm{f}(1)=(1-1)^{2}+3=0+3=3\)
\(\mathrm{f}(-3)=(-3-1)^{2}+3=16+3=19\)
Therefore, we have the absolute maximum value of f on \( [-3,1] \) is 19 occurring at \( x=-3 \).
And, the absolute minimum value of \( f \) on \( [-3,1] \) is 3 occurring at \( x=1 \).
exercise 6.5 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 6 exercise 6.5 || class 12 maths exercise 6.5 || application of derivatives class 12 ncert solutions || ex 6.5 class 12 maths ncert solutions
\(\Rightarrow \mathrm{p}^{\prime}(x)=-72-36 x\)
and \( p^{\prime \prime}(x)=-36 \)
Now, \( g^{\prime}(x)=0 \)
\(72=-36 x\)
\(\Rightarrow x=\frac{-72}{36}\)
\(\Rightarrow x=-2\)
\(P^{\prime \prime}(-2)=-36 < 0\)
Then, by second derivative test,
\( x=-2 \) is point of local maxima of \( p \).
Therefore, Maximum Profit \( = \)
\(\mathrm{P}(-2)=41-72(-2)-18(-2)^{2}\)
\(=41+144-72\)
\(=113\)
Therefore, the maximum profit that the company can make is 113 units.
\(\Rightarrow \mathrm{f}^{\prime}(x)=12 x^{3}-24 x^{2}+24 x-48\)
\(=12\left(x^{3}-2 x^{2}+2 x-4\right)\)
\(=12\left[x^{2}(x-2)+2(x-2)\right]\)
\(=12(x-2)\left(x^{2}+2\right)\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\( \Rightarrow x=2 \) or \( \left(x^{2}+2\right)=0 \) for which there are no real roots.
Therefore, we will only consider \( x=2 \)
Now, we evaluate the value of \( f \) at critical point \( x=2 \) and at end points of the interval \( [0,3] \).
\(\mathrm{f}(2)=3(2)^{4}-8(2)^{3}+12(2)^{2}-48(2)+25\)
\(=3(16)-8(8)+12(4)+25\)
\(=48-64+48-96+25\)
\(=-39\)
\(\mathrm{f}(0)=3(0)^{4}-8(0)^{3}+12(0)^{2}-48(0)+25\)
\(=0+0+0+25\)
\(=25\)
\(\mathrm{f}(3)=3(3)^{4}-8(3)^{3}+12(3)^{2}-48(3)+25\)
\(=3(81)-8(27)+12(9)+25\)
\(=243-216+108-144+25\)
\(=16\)
Therefore, we have the absolute maximum value of \( f \) on \( [0,3] \) is \(25\) occurring at \( x=0 \).
And, the absolute minimum value of \( f \) on \( [0,3] \) is \(-39\) occurring at \( x=2 \).
\(\mathrm{f}^{\prime}(x)=2 \cos 2 x\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow \cos 2 x=0\)
\(\Rightarrow 2 x=0\)
\(\Rightarrow x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}\)
Now, we evaluate the value of f at critical point \( x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4} \) and at end points of the interval \( [0,2 \pi] \)
\(f^{\prime}\left(\frac{\pi}{4}\right)=\sin \frac{\pi}{2}-1\)
\(f^{\prime}\left(\frac{3 \pi}{4}\right)=\sin \frac{3 \pi}{2}=-1\)
\(f^{\prime}\left(\frac{5 \pi}{4}\right)=\sin \frac{5 \pi}{2}=1\)
\(f^{\prime}\left(\frac{7 \pi}{4}\right)=\sin \frac{7 \pi}{2}=-1\)
\(f(0)=\sin 0, f(2 \pi)=\sin 2 \pi=0\)
Therefore, we have the absolute maximum value of f on \( [0,2 \pi] \) is 1 occurring at
\(x=\frac{\pi}{4} \text { and } x=\frac{5 \pi}{4}\)
\(\Rightarrow \mathrm{f}^{\prime}(x)=\cos x-\sin x\)
Now, \( f^{\prime}(x)=0 \)
\(\Rightarrow \cos x-\sin x=0\)
\(\Rightarrow \cos x=\sin x\)
\(\Rightarrow \tan x=1\)
\(\Rightarrow x=\frac{\pi}{4}, \frac{5 \pi}{4} \ldots \ldots \ldots\)
Now,
If \( f^{\prime}(x) \) will be negative when \( (\sin x+\cos x) > 0 \), means both \( \sin x \) and \(\cos x\) are positive.
And, we know that \( \sin x \) and \( \cos x \) both are positive in the first quadrant.
Then, \( \mathrm{f}^{\prime \prime} ( x ) \) will be negative when
\(X \in\left(0, \frac{\pi}{2}\right)\)
\(f^{\prime \prime}(x)=-\sin x-\cos x=-(\sin x+\cos x)\)
Now, let us take \( x=\frac{\pi}{4} \)
\(f^{\prime \prime}\left(\frac{\pi}{4}\right)=-\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)=-\frac{2}{\sqrt{2}}=-\sqrt{2} < 0\)
Then, by second derivative test,
\(f\) will be maximum at \( x=\frac{\pi}{4} \)
And, the maximum value of f is
\(f^{\prime}\left(\frac{\pi}{4}\right)=\sin \frac{\pi}{4}+\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}\)
\(\Rightarrow f^{\prime}(x)=6 x^{2}-24\)
\(=6\left(x^{2}-4\right)\)
Now, \( f^{\prime}(x)=0 \)
\(\Rightarrow 6\left(x^{2}-4\right)=0\)
\(\Rightarrow x^{2}=4\)
\(\Rightarrow x=2\)
Therefore, we will only consider the interval \( [1,3] \)
Now, we evaluate the value of \( f \) at critical point \( x=2 \epsilon[1,3] \) and at end points of the interval \( [1,3] \).
\(\mathrm{f}(2)=2(2)^{3}-24(2)+107\)
\(=2(8)-24(2)+107\)
\(=75\)
\(f(1) =2(1)^{3}-24(1)+107\)
\( =2-24+107\)
\( =85\)
\(f(3)=2(3)^{3}-24(3)+107\)
\(=2(27)-24(3)+107\)
\(=89\)
Therefore, we have the absolute maximum value of \( f \) on \( [1,3] \) is 89 occurring at \( x=3 \).
Now, we will only consider the interval \( [-3,-1] \)
Now, we evaluate the value of \( f \) at critical point \( x=-2 \epsilon[-3,-1] \) and at end points of the interval \( [1,3] \).
\(\mathrm{f}(-3)=2(-3)^{3}-24(-3)+107\)
\(= 2(-27)-24(-3)+107\)
\(= 125\)
\( f(-1)=2(-1)^{3}-24(-1)+107\)
\(= -2+24+107\)
\(= 129\)
\(f(-2)=2(-2)^{3}-24(-2)+107\)
\(= 2(-8)-24(-2)+107\)
\(=139\)
Therefore, we have the absolute maximum value of \( f \) on \( [-3,-1] \) is 89 occurring at \( x=-2 \).
Then, \( \mathrm{f}^{\prime}(x)=4 x^{3}-124 x+\mathrm{a} \)
It is given that function \( f \) attains its maximum value on the interval \( [0,2] \) at \( x=1 \).
\(\Rightarrow \mathrm{f}^{\prime}(1)=0\)
\(\Rightarrow 4-124+\mathrm{a}=0\)
\(\Rightarrow \mathrm{a}=120\)
Therefore, the value of a is 120 .
\( f^{\prime}(x)=1+2 \cos 2 x \)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\( \Rightarrow \cos 2 x=-\frac{1}{2}=-\cos \frac{\pi}{3}=\cos \left(\pi-\frac{\pi}{3}\right)=\cos \frac{2 \pi}{3} \)
\( 2 x=2 \pi \frac{2 \pi}{3}, \mathrm{n} \in \mathrm{Z} \)
\( \Rightarrow x=\mathrm{n} \pi \frac{\pi}{3}, \mathrm{n} \in \mathrm{Z} \)
\( \Rightarrow x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3} \in[0,2 \pi] \)
Now, we evaluate the value of f at critical point \( x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3} \) and at end points of the interval \( [0,2 \pi] \)
\(f^{\prime}\left(\frac{\pi}{3}\right)=\frac{\pi}{3}+\sin \frac{2 \pi}{3}=\frac{\pi}{3}+\frac{\sqrt{3}}{2}\)
\(f^{\prime \prime}\left(\frac{\pi}{3}\right)=\frac{2 \pi}{3}+\sin \frac{4 \pi}{3}=\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\)
\(f^{\prime}\left(\frac{4 \pi}{3}\right)=\frac{4 \pi}{3}+\sin \frac{8 \pi}{3}=\frac{4 \pi}{3}+\frac{\sqrt{3}}{2}\)
\(f^{\prime}\left(\frac{5 \pi}{4}\right)=\frac{5 \pi}{3}+\sin \frac{10 \pi}{3}=\frac{5 \pi}{3}+\frac{\sqrt{3}}{2}\)
\(f^{\prime}(0)=0+\sin 0=0\)
\(f^{\prime}(2 \pi)=2 \pi+\sin 4 \pi=2 \pi+0=2 \pi\)
Therefore, we have the absolute maximum value of \( f \) on \( [0,2 \pi] \) is \( 2 \pi \) occurring at
\( x=2 \pi \) and absolute minimum value of \( f(x) \) in the interval \( [0,2 \pi] \) is 0 occuring at \( x=0 \).
Let \( \mathrm{P}(x) \) denote the product of the two numbers.
Then, we get,
\(P(x)=x(24-x)=24 x-x^2\)
\(\Rightarrow P^{\prime}(x)=24-2 x\)
\(\Rightarrow P^{\prime \prime}(x)=-2\)
Now, \( P^{\prime}(x)=0 \)
\(\Rightarrow x=12\)
And
\(P^{\prime \prime}(12)=-2 < 0\)
Then, by second derivative test,
\( x=12 \) is the point of local maxima of P .
Therefore, the product of the numbers is the maximum when the numbers are 12 and \( 24-12=12 \).
\(\Rightarrow y=60-x\)
Let \( f(x)=xy^{3} \)
\(\Rightarrow \mathrm{f}(x)=x(60-x)^{3}\)
\(\Rightarrow f^{\prime}(x)=(60-x)^{3}-3 x(60-x)^{2}\)
\(=(60-x)^{2}[60-x-3 x]\)
\(=(60-x)^{2}[60-4 x]\)
And \( f^{\prime}(x)=-2(60-x)(60-4 x)-4(60-x)^{2} \)
\(=-2(60-x)[60-4 x+2(60-x)]\)
\(=-2(60-x)(180-6 x)\)
\(=-12(60-x)(30-x)\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow x=60 \text { or } x=15\)
When \( x=60, f^{\prime}(x)=0 \).
When \( x=15, f^{\prime}(x)=-12(60-15)(30-15)=-12 \times 45 \times 15 < 0 \)
Then, by second derivative test, \( x=15 \) is a point of local maxima of f . Then, function \( \mathrm{xy}^{3} \) is maximum when \( x=15 \) and \( y=60-15=45 \).
Therefore, required numbers are 15 and 45 .
Let \( P(x)=x^{2} y^{5} \)
Then, we get, \( P(x) \)
\(=2 x(35-x)^{5}-5 x^{2}(35-x)^{4}\)
\(=x(35-x)^{4}[2(35-x)-5 x]\)
\(=x(35-x)^{4}[70-7 x]\)
\(=7 x(35-x)^{4}(10-x)\)
Now, \( \mathrm{P}^{\prime\prime} (x)=7(35-x)^{4}(10-x)+7 x\left[-(35-x)^{4}-4(35-x)^{3}(10-x)\right] \)
\(\left.=7(35-x)^{4}(10-x)-7 x(35-x)^{4}-28 x(35-x)^{3}(10-x)\right]\)
\(=7(35-x)^{3}[(35-x)(10-x)-x(35-x)-4 x(10-x)]\)
\(=7(35-x)^{3}\left[350-45 x+x^{2}-35 x+x^{2}-40 x+4 x^{2}\right]\)
\(=7(35-x)^{3}\left[6 x^{2}-120 x+350\right]\)
Now, \( P^{\prime}(x)=0 \)
\(\Rightarrow x=0,35,10\)
When \( x=0,35 \) This will make the product \(x^2 y^5\) equal to 0 .
Therefore, \( x=0,35 \) cannot be possible values of \( x \).
And when \( x=10 \)
Then, we have,
\(\mathrm{P}^{\prime \prime}(x)=7(35-10)^{3}\left[6(10)^{2}-120(10)+350\right]\)
\(=7(25)^{3}[-250] < 0\)
Then, by second derivative test,
\( x=10 \) and \( y=35-10=25 \) is the point of local maxima of \( P \).
Therefore, the required number are 10 and 25 .
Let \( S(x) \) be the sum of these number. Then,
\(S(x)=x^{3}+(16-x)^{3}\)
\(\Rightarrow S^{\prime}(x)=3 x^{2}-3(16-x)^{2}\)
\(\Rightarrow S^{\prime \prime}(x)=6 x+6(16-x)\)
Now, \( S^{\prime}(x)=0 \)
\(\Rightarrow 3 x^{2}-3(16-x)^{2}=0\)
\(\Rightarrow x^{2}-(16-x)^{2}=0\)
\(\Rightarrow x^{2}-256-x^{2}+32 x=0\)
\(\Rightarrow x=8\)
Now, \( S^{\prime \prime}(8)=6(8)+6(16-8) \)
\(=48+48=96 > 0\)
Then, by second derivative test, \( x=8 \) is the point of local minima of \(S \).
Therefore, the sum of the cubes of the numbers is the minimum when the numbers are \(8\) and \( 16-8=8 \).
Then, the volume \( \{\mathrm{V}(x)\} \) of the box is given by:
\(V(x)=x(18-x)^{2}\)
\(\Rightarrow V^{\prime}(x)=(18-x)^{2}-2 x(18-x)\)
\(=(18-x)[18-x-2 x]\)
\(=(18-x)(18-3 x)\)
Now, \(V^{\prime\prime} (x)=(18-x)(-3)+(18-3 x)(-1) \)
\(=-3(18-x)-(18-3 x)=-54+3 x-18+3 x=6 x-72\)
Now, \( V^{\prime}(x)=0 \)
\(\Rightarrow x=18 \text { or } 3\)
If \( x=18 \) then breadth becomes 0 which is not possible Therefore, \( x=3 \)
\(V^{\prime \prime}(3)=6.3-72=-\mathrm{ve}\)
Then, by second derivative test, \( x=3 \) is the point of maxima of \( V \).
Therefore, If we remove a square of side 3 cm from each corner of the square tin and make a box from the remaining sheet, then the volume of the box obtained is the largest possible.
Then, the volume \( \{\mathrm{V}(x)\} \) of the box is given by:
\(V(x)=x(45-2 x)(24-x)\)
\(=x\left(1080-90 x-48 x+4 x^{2}\right)\)
\(=4 x^{3}-138 x^{2}+1080 x\)
\(\Rightarrow V^{\prime}(x)=12 x^{2}-276 x+1080\)
\(=12\left(x^{2}-23 x+90\right)\)
\(=12(x-18)(x-5)\)
Now, \( \mathrm{V}^{\prime\prime} \) \( (x)=24 x-276=12(2 x-23) \)
Now, \( V^{\prime}(x)=0 \)
\(\Rightarrow x=18 \text { or } 5\)
It is not possible to cut off a square of side 18 cm from each corner of the rectangular sheet. So, \( x \) cannot be equal to 18 .
Therefore, \( x=5 \)
\(V^{\prime \prime}(5)=12(10-23)=-156 < 0\)
Then, by second derivative test, \( x=5 \) is the point of maxima of V .
Therefore, the side of the square to be cut off to make the volume of the box maximum possible is 5 cm .

Let a rectangle of length 1 and breadth \( b \) be inscribed in the circle of radius a.
Then, the diagonal passes through the centre and is of length 2 acm .
Now, by Pythagoras theorem, we get,
\((2 a)^{2}=1^{2}+b^{2}\)
\(\Rightarrow b^{2}=4 a^{2}-1^{2}\)
\(\Rightarrow b=\sqrt{4 a^{2}-1^{2}}\)
Therefore, Area of rectangle, \( \mathrm{A}=1 \sqrt{4 a^{2}-1^{2}} \)
\(\Rightarrow \frac{d A}{d l}=\sqrt{4 a^{2}-1^{2}}+1 \frac{1}{2 \sqrt{4 a^{2}-1^{2}}}(-21)\)
\(=\sqrt{4 a^{2}-1^{2}}-\frac{1^{2}}{\sqrt{4 a^{2}-1^{2}}}\)
\(=\frac{4 a^{2}-1^{2}}{\sqrt{4 a^{2}-1^{2}}}\)
\( \frac{d^{2} A}{d 1^{2}}=\frac{\sqrt{4 a^{2}-1^{2}}(-4 I)-\left(4 a^{2}-21^{2}\right) \frac{(-21)}{2 \sqrt{4 a^{2}-1^{2}}}}{\left(\sqrt{4 a^{2}-1^{2}}\right)} \)
\(=\frac{\left(4 a^{2}-1^{2}\right)(-4 I)+1\left(4 a^{2}-21^{2}\right)}{\left(4 a^{2}-1^{2}\right)^{\frac{3}{2}}}\)
\(=\frac{-12 a^{2} 1+21^{3}}{\left(4 a^{2}-1^{2}\right)^{\frac{3}{2}}}\)
\(=\frac{-2 i\left(6 a^{2}-1^{2}\right)}{\left(4 a^{2}-1^{2}\right)^{\frac{3}{2}}}\)
\(\frac{d A}{d l}=0\)
Gives \( 4 a^{2}=21^{2} \)
\( \Rightarrow l=\sqrt{2} \mathrm{a} \)
\( \Rightarrow \mathrm{b}=\sqrt{4 a^{2}-2 a^{2}}=\sqrt{2 a^{2}}=\sqrt{2 a} \)
when \( l=\sqrt{2 a} \)
Then, \( =\frac{d^{2} A}{d I^{2}}=\frac{-2(\sqrt{2} a)\left(6 a^{2}-2 a^{2}\right)}{2 \sqrt{2} a^{3}}=\frac{-8 \sqrt{2} a^{3}}{2 \sqrt{2} a^{3}}=-4=0 \)
Then, by second derivative test, when \( l=\sqrt{2 a} \), then the area of the rectangle is the maximum.
Since, \( l=b=\sqrt{2 a} \),
Therefore, the rectangle is square.
Hence proved.
Let V be the volume of the cylinder. Then
\(\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}=100 \text { (given) }\)
\(\Rightarrow \mathrm{h}=\frac{100}{\pi \mathrm{r} 2}\)
hence, the surface area ( S ) of the cylinder is given by:
\(\mathrm{S}=2 \pi \mathrm{r}^{2}+2 \pi \mathrm{rh}\)
\(=2 \pi \mathrm{r}^{2}+\frac{200}{r}\)
Now,
\(\frac{d s}{d r}=4 \pi r-\frac{200}{r^{2}}, \frac{d^{2} s}{d r^{2}}=4 \pi+\frac{400}{r^{3}} < 0\)
If \( \frac{d s}{d r}=0 \Rightarrow \frac{200}{r^{2}} \Rightarrow r^{3}=\frac{200}{4 \pi}=\frac{50}{\pi} \Rightarrow \mathrm{r}=\left(\frac{50}{\pi}\right)^{\frac{1}{3}} \)
So, when \( \mathrm{r}=\left(\frac{50}{\pi}\right)^{\frac{1}{3}} \) then \( \frac{d^{2} S}{d r^{2}} > 0 \)
Then, by second derivative test, the surface area is the minimum when \( r \) \( =\left(\frac{50}{\pi}\right)^{\frac{1}{3}} \)
Now, when \( \mathrm{r}=\left(\frac{50}{\pi}\right)^{\frac{1}{3}} \) then \( \mathrm{h}=\frac{100}{\pi\left(\frac{50}{\pi}\right)^{\frac{1}{3}}}=2\left(\frac{50}{\pi}\right)^{\frac{1}{3}} \mathrm{~cm} \).
Therefore, the dimensions of the can which has the minimum surface area are \( \mathrm{r}=\left(\frac{50}{\pi}\right)^{\frac{1}{3}} \) and \( \mathrm{h}=2\left(\frac{50}{\pi}\right)^{\frac{1}{3}} \mathrm{~cm} \).
exercise 6.5 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 6 exercise 6.5 || class 12 maths exercise 6.5 || application of derivatives class 12 ncert solutions || ex 6.5 class 12 maths ncert solutions
Now, side of square \( =\frac{1}{4} \)
Let \( r \) be the radius of the circle,
Then, \( 2 \pi r=28-1 \)
\(\Rightarrow r=\frac{1}{2 \pi}(28-1)\)
Therefore, the required area (a) is given by
\( \mathrm{A}=( \) side of the square \( ) 2+\pi \mathrm{r}^{2} \)
\(=\frac{1^{2}}{16}+\pi\left[\frac{1}{2 \pi}(28-1)\right]^{2}\)
\(=\frac{1^{2}}{16}+\frac{1}{4 \pi}\left[(28-1)^{2}\right]\)
Then, \( \frac{d A}{d l}=\frac{21}{16}+\frac{2}{4 \pi}(28-1)(-1) \)
\(=\frac{1}{8}-\frac{2}{4 \pi}(28-1)\)
\(\frac{d^{2} A}{d l^{2}}=\frac{1}{8}-\frac{2}{2 \pi}(28-1)=0\)
Now, if \( \frac{d A}{d l}=0 \)
Then, \( \frac{1}{8}-\frac{2}{2 \pi}(28-1)=0 \)
\(\begin{array}{l}
\Rightarrow \frac{\pi 1-4(28-1)}{8 \pi}=0 \\
\Rightarrow(\pi+4) l-112=0 \\
\Rightarrow 1=\frac{112}{\pi+4}
\end{array}\)
So, when \( 1=\frac{112}{\pi+4} \)
Then, \( \frac{d^{2} A}{d l^{2}} > 0 \)
Then, by second derivative test, the area \( (\mathrm{A}) \) is the minimum when \( 1= \) \( \frac{112}{\pi+4} \).
Therefore, the combined area is the minimum when the length of the wire in making the square is \( \frac{112}{\pi+4} \mathrm{~cm} \) while the length of the wire in making the circle is \( 28-\frac{112}{\pi+4}=\frac{28 \pi}{\pi+4} \mathrm{~cm} \).
Let V be the volume of cone.
Then, \( \mathrm{V}=\frac{1}{3} \pi r^{2} \mathrm{~h} \)
And height of cone \( \mathrm{h}=\mathrm{R}+\sqrt{R^{2}-r^{2}} \)
\(\therefore \mathrm{V}=\frac{1}{3} \pi r^{2}\left(\mathrm{R}+\sqrt{R^{2}-r^{2}}\right)\)
Now, \( \frac{d V}{d r}=\frac{2}{3} \pi r R+\frac{2}{3} \pi r \sqrt{R^{2}-r^{2}}+\frac{1}{3} \pi r^{2} \cdot \frac{(-2 r)}{2 \sqrt{R^{2}-r^{2}}} \)
\( =\frac{2}{3} \pi r R+\frac{2}{3} \pi r \sqrt{R^{2}-r^{2}}+\frac{1}{3} \pi \frac{r^{3}}{\sqrt{R^{2}-r^{2}}} \)
\( =\frac{2}{3} \pi r R+\frac{2 \pi r\left(R^{2}-r^{2}\right)-\pi r^{3}}{\sqrt[3]{R^{2}-r^{2}}} \)
\( =\frac{2}{3} \pi r R+\frac{2 \pi r R^{2}-3 \pi r^{3}}{\sqrt[3]{R^{2}-r^{2}}} \)
\( \frac{d^{2} V}{d r^{2}}=\frac{2}{3} \pi r R+\frac{\sqrt[3]{R^{2}-r^{2}}\left(2 \pi R^{2}-9 \pi r^{2}\right)-\left(2 \pi r R^{2}-3 \pi r^{3}\right) \cdot \frac{(-2 r)}{\sqrt[6]{R^{2-r^{2}}}}}{9\left(R^{2}-r^{2}\right)} \)
\( =\frac{2}{3} \pi r R+\frac{9\left(R^{2}-r^{2}\right)\left(2 \pi R^{2}-9 \pi r^{2}\right)+\left(2 \pi r R^{2}-3 \pi r^{3}\right)}{27\left(R^{2}-r^{2}\right)} \)
Now, if \( \frac{d V}{d r}=0 \Rightarrow \frac{2}{3} \pi r R=-\left(\frac{2 \pi r R^{2}-3 \pi r^{3}}{\sqrt[3]{R^{2}-r^{2}}}\right) \)
After solving this we get, \( r^{2}=\frac{8}{9} R^{2} \)
So, when, \( r^{2}=\frac{8}{9} R^{2} \), then \( \frac{d^{2} V}{d r^{2}} < 0 \)
Then, by second derivative test, the volume of the cone is the maximum when \( r^{2}=\frac{8}{9} R^{2} \)
So, when,
\( r^{2}=\frac{8}{9} R^{2}, \mathrm{~h}=\mathrm{R}+\sqrt{R^{2}-\frac{8}{9} R^{2}}=\mathrm{R}+\sqrt{\frac{1}{9} R^{2}}=\mathrm{R}+\frac{R}{3}=\frac{4}{3} \mathrm{R} \)
Therefore, \( \mathrm{V}=\frac{1}{3} \pi\left(\frac{8}{9} R^{2}\right)\left(\frac{4}{3} \mathrm{R}\right) \)
\( =\frac{8}{27}\left(\frac{4}{3} \pi R^{2}\right)=\frac{8}{27} \times( \) volume of sphere \( ) \)
Therefore, the volume of the largest cone that can be inscribed in the sphere is \( \frac{8}{27} \) the volume of the sphere.
Then, the volume \( (\mathrm{V}) \) of the cone is given by:
\(\mathrm{V}=\frac{1}{3} \pi r^{2} \mathrm{~h} \Rightarrow \mathrm{h}=\frac{3 V}{\pi r^{2}}\)
The surface area \( (\mathrm{S}) \) of the cone
\(\mathrm{S}=\pi \mathrm{rl}\)
\(=\pi \mathrm{r} \sqrt{r^{2}+h^{2}}\)
\(=\pi \mathrm{r} \sqrt{r^{2}+\frac{9 V}{\pi^{2} r^{4}}}\)
\(=\pi \mathrm{r} \sqrt{\frac{\pi^{2} r^{6}+9 V^{2}}{\pi^{2} r^{4}}}\)
\(=\frac{\pi r}{\pi r^{2}} \sqrt{\pi^{2} r^{6}+9 V^{2}}\)
\(\text { Then, } \frac{d S}{d r}=\frac{r \cdot \frac{1}{2 \sqrt{\pi^{2} r^{6}+9 V^{2}}} \cdot 6 \pi^{2} r^{5}-\sqrt{\pi^{2} r^{6}+9 V^{2}}}{r^{2}}\)
\(=\frac{3 \pi^{2} r^{6}-\pi^{2} r^{6}-9 V^{2}}{r^{2} \sqrt{\pi^{2} r^{6}+9 V^{2}}}\)
\(=\frac{2 \pi^{2} r^{6}-9 V^{2}}{r^{2} \sqrt{\pi^{2} r^{6}+9 V^{2}}}\)
Now, if \( \frac{d S}{d r}=0 \Rightarrow 2 \pi^{2} r^{6}=9 V^{2} \Rightarrow r^{6}=\frac{9 V^{2}}{2 \pi^{2}} \)
So, when \( r^{6}=\frac{9 V^{2}}{2 \pi^{2}} \) then \( \frac{d^{2} s}{d r^{2}} > 0 \)
Then, by second derivative test, the surface area of the cone is the least when \( r^{6}=\frac{9 V^{2}}{2 \pi^{2}} \)
So when, \( r^{6}=\frac{9 V^{2}}{2 \pi^{2}} \),
then \( =\mathrm{h}=\frac{3 V}{\pi r^{2}}=\frac{3}{\pi r^{2}}\left(\frac{2 \pi^{2} r^{6}}{9}\right)^{\frac{1}{2}}=\frac{3}{\pi r^{2}} \cdot \frac{\sqrt{2} \pi r^{3}}{3}=\sqrt{2 r} \).
Therefore, for a given volume, the right circular cone of the least curved surface has an altitude equal to \( \sqrt{2} \) times the radius of the base.
Let \( \mathrm{r}, \mathrm{h} \) and \(l\) be the radius, height and the slant height of the cone respectively.
It is given that slant height is constant.
Now, \( \mathrm{r}=l \sin \theta\) and \( \mathrm{h}=l \cos \theta\)
Then, the volume of the cone \( (\mathrm{V}) \)
\(\mathrm{V}=\frac{1}{3} \pi r^{2} \mathrm{~h}\)
\(=\frac{1}{3} \pi\left(1^{2} \sin ^{2} \theta\right)(l \cos \theta)\)
\(=\frac{1}{3} \pi 1^{3} \sin ^{2} \theta \cos \theta\)
\(\therefore \frac{d V}{d \theta}=\frac{1^{3} \pi}{3}\left[\sin n^{2} \theta(-\sin \theta)+\cos \theta(2 \sin \theta \cos \theta)\right]\)
\(=\frac{1^{3} \pi}{3}\left[-\sin ^{3} \theta+2 \sin \theta \cos ^{2} \theta\right]\)
\(\frac{d V^{2}}{d \theta^{2}}=\frac{1^{3} \pi}{3}\left[\sin ^{2} \theta(-\sin \theta)+\cos \theta(2 \sin \theta \cos \theta)\right]\)
\(=\frac{1^{3} \pi}{3}\left[-\sin ^{3} \theta+2 \sin \theta \cos ^{2} \theta\right]\)
\(\frac{d V^{2}}{d \theta^{2}}=\frac{1^{3} \pi}{3}\left[-3 \sin ^{2} \theta \cos \theta+2 \cos ^{3} \theta-4 \sin ^{2} \theta \cos \theta\right]\)
\(=\frac{1^{3} \pi}{3}\left[2 \cos ^{3} \theta-7 \sin ^{2} \theta \cos \theta\right]\)
Now, if \( \frac{d V}{d \theta}=0 \)
\(\sin ^{3} \theta=2 \sin \theta \cos ^{2} \theta\)
\(\Rightarrow \tan ^{2} \theta=2\)
\(\Rightarrow \tan \theta=\sqrt{2}\)
\(\Rightarrow \theta=\tan ^{-1} \sqrt{2}\)
Now, when, \( \theta=\tan ^{-1} \sqrt{2} \tan ^{2} \theta=2 \) or \( \sin ^{2} \theta=2 \cos ^{2} \theta\).
Then, we get
\(\frac{d V^{2}}{d \theta^{2}}=\frac{1^{3} \pi}{3}\left[2 \cos ^{3} \theta-14 \cos ^{3} \theta\right]\)
\(=-4 \pi l^{3} \cos ^{3} \theta < 0 \text { for } \theta\epsilon\left[0, \frac{\pi}{2}\right]\)
Then, by second derivative test, the volume \( (\mathrm{V}) \) is the maximum when \( \theta=\tan ^{-1} \sqrt{2} \)
Therefore, the semi-vertical angle of the cone of the maximum volume and of given slant height is \( \tan ^{-1} \sqrt{2} \).
Hence Proved.
and Volume of the cone \( (\mathrm{V})=\frac{1}{3} \pi r^{2} \mathrm{~h} \)
\(V^{2}=\frac{1}{9} \pi^{2} r^{4}\left(1^{2}-r^{2}\right)\)
Then by (1), we get,
\(V^{2}=\frac{1}{9} \pi^{2} r^{4}\left[\left(\frac{s}{\pi r}-r\right)^{2}-r^{2}\right]\)
\(=\frac{1}{9}\left(S\left(S r^{2}-2 \pi r^{4}\right)\right)\)
\(\mathrm{P}=\mathrm{V}^{2}\)
Now, differentiating P with respect to r , we get,
\(\frac{d P}{d r}=\frac{1}{9}\left(S\left(2 S r-8 \pi r^{3}\right)\right.\)
Now, if \( \frac{d P}{d r}=0 \), then
\(\mathrm{S}=4 \pi r^{2}\)
Now again differentiating with respect to r , we get \( \frac{d^{2} P}{d r^{2}} < 0 \)
Therefore, P is maximum when \( \mathrm{S}=4 \pi \mathrm{r}^{2} \)
And V is maximum when \( \mathrm{S}=4 \pi \mathrm{r}^{2} \)
\(\Rightarrow \pi r(1+r)=4 \pi r^{2}\)
\(\Rightarrow 1=3 r\)
\( \operatorname{Sin} \theta=\frac{r}{1}=\frac{1}{3} \)
\(\Rightarrow \theta=\operatorname{Sin}^{-1}\left(\frac{1}{3}\right)\)
Therefore, semi-vertical angle of right circular cone of given surface area and maximum volume is \( \operatorname{Sin}^{-1}\left(\frac{1}{3}\right) \).
Hence Proved.
A. \( (2 \sqrt{2}, 4) \) B. \( (2 \sqrt{2}, 0) \) C. \( (0,0) \) D. \( (2,2) \)
For each value of \(x \), the position of the point will be \( \left(x, \frac{x^{2}}{2}\right) \)
The distance \( \mathrm{d}(x) \) between the points \( \left(x, \frac{x^{2}}{2}\right) \) and \( (0,5) \) is given by:
\(\mathrm{d}(x)=\sqrt{(x-0)^{2}+\left(\frac{x^{2}}{2}-5\right)^{2}}\)
\(=\sqrt{x^{2}+\frac{x^{2}}{4}+25-5 x^{2}}\)
\(=\sqrt{\frac{x^{2}}{4}-4 x^{2}+25}\)
\(\therefore d^{\prime}(x)=\frac{\left(x^{3}-8 x\right)}{2 \sqrt{\frac{x^{4}}{4}-4 x^{2}+25}}\)
\(=\frac{\left(x^{3}-8 x\right)}{\sqrt{x^{4}-16 x^{2}+100}}\)
\(d^{\prime}(x)=0\)
\(\Rightarrow x^{3}-8 x=0\)
\(\Rightarrow x\left(x^{2}-8\right)=0\)
\(\Rightarrow x=0, \pm 2 \sqrt{2}\)
And,
\(d^{\prime \prime}(x)=\frac{\sqrt{x^{4}-16 x^{2}+100}\left(3 x^{2}-8\right)-\left(x^{3}-8 x\right) \cdot \frac{4 x^{3}-32 x}{2 \sqrt{x^{4}-16 x^{2}+100}}}{x^{4}-16 x^{2}+100}\)
\(=\frac{\left(x^{4}-16 x^{2}+100\right)\left(3 x^{2}-8\right)-2\left(x^{3}-8 x\right)\left(x^{3}-8 x\right)}{\left(x^{4}-16 x^{2}+100\right)^{\frac{3}{2}}}\)
So, now when \( x=0 \), then \( d^{\prime \prime}(x)=\frac{36(-8)}{6^{3}} < 0 \)
And when, \( x= \pm \sqrt[2]{2}, d^{\prime \prime}(x) > 0 \)
Then, by second derivative test, \( d(x) \) is minimum at \( x= \pm \sqrt[2]{2} \)
So when, \( x= \pm \sqrt[2]{2} \cdot y=\frac{(\sqrt[2]{2})^{2}}{2}=4 \)
Therefore, the point on the curve \( x^{2}=2 y \) which is nearest to the point \( (0,5) \) is \( ( \pm \sqrt[2]{2}, 4) \).
A. 0 B. 1 C. 3 D. \( \frac{1}{3} \)
\(\therefore f^{\prime}(x)=\frac{\left(1+x+x^{2}\right)(-1+2 x)-\left(1-x+x^{2}\right)(1+2 x)}{\left(1+x+x^{2}\right)^{2}}\)
\( =\frac{2 x^{2}-2}{\left(1+x+x^{2}\right)^{2}} \)
\(=\frac{2\left(x^{2}-1\right)}{\left(1+x+x^{2}\right)^{2}}\)
Then, \( \mathrm{f}^{\prime}(x)=0 \)
\( \Rightarrow x^{2}=1 \)
\( \Rightarrow x=\pm 21 \)
Now, \( f^{\prime \prime}(x)=\frac{4\left(1+x+x^{2}\right)\left[\left(1+x+x^{2}\right) x-\left(x^{2}-1\right)(1+2 x)\right]}{\left(1+x+x^{2}\right)^{4}} \)
\( =\frac{4\left(x+x^{2}-x^{3}-x^{2}-2 x^{3}+1+2 x\right)}{\left(1+x+x^{2}\right)^{3}} \)
\( =\frac{4\left[1+2 x-x^{3}\right]}{\left(1+x+x^{2}\right)^{3}} \)
And, \(f {\prime \prime}(1)=\frac{4\left[1+2(1)-(1)^{3}\right]}{\left(1+1+1^{2}\right)^{3}}=\frac{4[3]}{(3)^{3}}=\frac{4}{9} > 0 \)
Also, \( f^{\prime\prime}(-1)=-4 < 0 \)
Then, by second derivative test, \( f \) is minimum at \( x=1 \) and the minimum value is given by
\( f(1)=\frac{1-1+1}{1+1+1}=\frac{1}{3} \)
A. \( \left(\frac{1}{3}\right)^{\frac{1}{3}} \) B. \( \frac{1}{2} \) C. 1 D. 0
\(\therefore f^{\prime}(x)=\frac{2 x-1}{3[[x(x-1)+1]]^{\frac{2}{3}}}\)
Now, if \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow x=\frac{1}{2}\)
Then, we evaluate the value of \( f \) at critical point \( x=\frac{1}{2} \) and at the end points of the interval \( [0,1] \).
\(f(0)=[0(0-1)+1]^{\frac{1}{3}}=1\)
\( f(1)=[1(1-1)+1]^{\frac{1}{3}}=1 \)
\(f\left(\frac{1}{2}\right)=\left[\frac{1}{2}\left(\frac{1}{2}-1\right)+1\right]^{\frac{1}{3}}=\left(\frac{3}{4}\right)^{\frac{1}{3}}\)
Therefore, we can conclude that the maximum value of in the interval \( [0,1] \) is \(1\).