Ex 6.5 class 12 maths ncert solutions

Ex 6.5 class 12 maths ncert solutions || class 12 maths exercise 6.5 || class 12 maths ncert solutions chapter 6 exercise 6.5 || exercise 6.5 class 12 maths ncert solutions || application of derivatives class 12 ncert solutions(English Medium)

NCERT Solutions for Class 12 Maths – Exercise 6.5 (Application of Derivatives)
Exercise 6.5 of Class 12 Maths NCERT Solutions focuses on the chapter Application of Derivatives, a crucial topic in calculus. These solutions are carefully designed to help students understand concepts like increasing and decreasing functions, maxima and minima, and approximation methods. Whether you’re looking for step-by-step explanations or preparing for board exams, the Class 12 Maths Exercise 6.5 NCERT solutions are extremely helpful. This content is tailored for English Medium students and strictly follows the CBSE syllabus. Studying from these Class 12 Maths NCERT Solutions Chapter 6 Exercise 6.5 will strengthen your grasp on derivatives and their real-life applications, making problem-solving much easier.

Ex 6.5 class 12 maths ncert solutions
exercise 6.5 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 6 exercise 6.5 || class 12 maths exercise 6.5 || application of derivatives class 12 ncert solutions || ex 6.5 class 12 maths ncert solutions
Download the Math Ninja App Now

Exercise 6.5

1A. Find the maximum and minimum values, if any, of the following functions given by \(f(x)=(2 x-1)^{2}+3\)
Answer
It is given that \( \mathrm{f}(x)=(2x-1)^{2}+3 \)
Now, we can see that \( (2 x-1)^{2} \geq 0 \) for every \( x \in R \)
\( \Rightarrow \mathrm{f}(x)=(2 x-1)^{2}+3 \geq 3 \) for every \( x \in \mathrm{R} \)
The minimum value of f is attained when \( 2 x-1=0 \)
\(2 x-1=0\)
\(\Rightarrow x=\frac{1}{2}\)
Then, Minimum value of
\(\mathrm{f}=\mathrm{f}\left(\frac{1}{2}\right)=\left(2 \cdot \frac{1}{2}-1\right)^{2}+3=3\)
Therefore, function f does not have a maximum value.
1B. Find the maximum and minimum values, if any, of the following functions given by \(f(x)=9 x^{2}+12 x+2\)
Answer
It is given that \( f(x)=9 x^{2}+12 x+2=(3 x+2)^{2}-2 \)
Now, we can see that \( (3 x+2)^{2} \geq 0 \) for every \( x \in R \)
\( \Rightarrow \mathrm{f}(x)=(3 x+2)^{2}-2 \geq-2 \) for every \( x \in \mathrm{R} \)
The minimum value of \( f \) is attained when \( 3 x+2=0 \)
\(3 x+2=0\)
\(\Rightarrow \frac{-2}{3}\)
Then, Minimum value of
\(f=f\left(\frac{-2}{3}\right)=\left(3\left(\frac{-2}{3}\right)+2\right)^{2}-2=-2\)
Therefore, function \( f \) does not have a maximum value.
1C. Find the maximum and minimum values, if any, of the following functions given by \(f(x)=-(x-1)^{2}+10\)
Answer
It is given that \( \mathrm{f}(x)=-(x-1)^{2}+10 \)
Now, we can see that \( (x-1)^{2} \geq 0 \) for every \( x \in R \)
\(\Rightarrow \mathrm{f}(x)=-(x-1)^{2}+10 \leq 10 \text { for every } x \in \mathrm{R}\)
The minimum value of \( f \) is attained when \( x-1=0 \)
\(x-1=0\)
\(\Rightarrow x=1\)
Then, Maximum value of \( \mathrm{f}=\mathrm{f}(1)=-(1-1)^{2}+10=10 \)
Therefore, function f does not have a minimum value.
1D. Find the maximum and minimum values, if any, of the following functions given by \(\mathrm{g}(x)=x^{3}+1\)
Answer
It is given that \( g(x)=x^{3}+1 \)
Now,
\(x \in \mathbb{R}\)
\(\Rightarrow-\infty \leq x \leq \infty\)
\(\Rightarrow-\infty \leq x^{3} \leq \infty\)
\(\Rightarrow-\infty \leq x^{3}+1 \leq \infty\)
The function g neither has a maximum value nor a minimum value.
2A. Find the maximum and minimum values, if any, of the following functions given by \(f(x)=|x+2|-1\)
Answer
It is given that \( \mathrm{f}(x)=|x+2|-1 \)
Now, we can see that \( |x+2| \geq 0 \) for every \( x \in R \)
\(\Rightarrow f(x)=|x+2|-1 \geq-1 \text { for every } x \in R\)
The minimum value of \( f \) is attained when \( |x+2|=0 \)
\(|x+2|=0\)
\(\Rightarrow x=-2\)
Then, Minimum value of \( f=f(-2)=|-2+2|-1=-1 \)
Therefore, function f does not have a maximum value.
2B. Find the maximum and minimum values, if any, of the following functions given by \(g(x)=-|x+1|+3\)
Answer
It is given that \( \mathrm{g}(x)=-|x+1|+3 \)
Now, we can see that \( -|x+1| \leq 0 \) for every \( x \in R \)
\(\Rightarrow \mathrm{g}(x)=-|x+1|+3 \leq 3 \text { for every } x \in \mathrm{R}\)
The maximum value of f is attained when \( |x+1|=0 \)
\(|x+1|=0\)
\(\Rightarrow x=-1\)
Then, Maximum value of \( g=g(-1)=-|-1+1|+3=3 \)
Therefore, function f does not have a minimum value.
2C. Find the maximum and minimum values, if any, of the following functions given by \(h(x)=\sin (2 x)+5\)
Answer
It is given that \( h(x)=\sin (2 x)+5 \)
Now, we can see that \( -1 \leq \sin 2 x \leq 1 \)
\(\Rightarrow-1+5 \leq \sin 2 x+5 \leq 1+5\)
\(\Rightarrow 4 \leq \sin 2 x+5 \leq 6\)
Therefore, the maximum and minimum value of function \( h \) are 6 and 4 respectively.
2D. Find the maximum and minimum values, if any, of the following functions given by \(f(x)=|\sin 4 x+3|\)
Answer
It is given that \( f(x)=|\sin 4 x+3| \)
Now, we can see that \( -1 \leq \sin 4 x \leq 1 \)
\(\Rightarrow 2 \leq \sin 4 x+3 \leq 4\)
\(\Rightarrow 2 \leq|\sin 4 x+3| \leq 4\)
Therefore, the maximum and minimum value of function h are 4 and 2 respectively.
2E. Find the maximum and minimum values, if any, of the following functions given by \(h(x)=x+1, x \in(-1,1)\)
Answer
It is given that \( \mathrm{h}(x)=x+1, x \in(-1,1) \)
Now, if a point \( x_{0} \) is closest to \(-1 \), then,
We find \( \frac{x_{0}}{2}+1 < x_{0}+1 \) for all \( x_{0} \in(-1,1) \)
Also, if a point \( x_{1} \) is closest to \(1 \), then,
We find \( x_{1}+1 < \frac{x_{1}+1}{2}+1 \) for all \( x_{1} \in(-1,1) \)
Therefore, the function \( \mathrm{h}(x )\) has neither maximum nor minimum value in \( (-1,1) \).
3A. Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:
\(f(x)=x^{2}\)
Answer
\(f(x)=x^{2}\)
\(\Rightarrow f^{\prime}(x)=2 x\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow x=0\)
\( \Rightarrow x=0 \) is the only critical point which could possibly be the point of local maxima or local minima of f .
\( \Rightarrow f^{\prime}(0)=2 \), which is positive.
Then, by second derivative test,
\( \Rightarrow x=0 \) is point of local maxima and local minima of f at \( x=0 \) is \( \mathrm{f}(0)= \) 0 .
3B. Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:
\(g(x)=x^{3}-3 x\)
Answer
\(g(x)=x^{3}-3 x\)
\(\Rightarrow g^{\prime}(x)=3 x^{2}-3\)
Now, \( g^{\prime}(x)=0 \)
\(\Rightarrow 3 x^{2}-3=0\)
\(\Rightarrow 3 x^{2}=3\)
\(\Rightarrow x=1\)
\(g^{\prime \prime}(x)=6 x\)
Now, \( g^{\prime}(1)=6 > 0 \)
and \( g^{\prime}(-1)=-6 < 0 \)
Then, by second derivative test,
\( \Rightarrow x=1 \) is point of local maxima and local minima of g at \( x=1 \) is \( g(1)=1^{3}-3=1-3=-2 \)
And, \( x=-1 \) is point of local maxima and local maximum value of \( g \) at \( x=-1 \) is
\(g(-1)=(-1)^{3}-3(-1)=-1+3=2\)
3C. Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:
\(h(x)=\sin x+\cos x, 0 < x < \frac{\pi}{2}\)
Answer
\(\mathrm{h}(x)=\sin x+\cos x, 0 < x < \frac{\pi}{2}\)
\(\mathrm{~h}^{\prime}(x)=\cos x-\sin x\)
Now, \( h^{\prime}(x)=0 \)
\(\Rightarrow \cos x-\sin x=0\)
\(\Rightarrow \cos x=\sin x\)
\(\Rightarrow \tan x=1\)
\(=x=\frac{\pi}{4}\)
\(h^{\prime \prime}(x)=-\sin x-\cos x=-(\sin x+\cos x)\)
\(h^{\prime \prime}\left(\frac{\pi}{4}\right)=-\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)=-\frac{2}{\sqrt{2}}=-\sqrt{2} < 0\)
Then, by second derivative test,
\( \Rightarrow x=\frac{\pi}{4} \) is point of local maxima and local minima of h at \( x=\frac{\pi}{4} \) is \( \mathrm{h}\left(\frac{\pi}{4}\right)=\sin \frac{\pi}{4}+\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2} \)
exercise 6.5 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 6 exercise 6.5 || class 12 maths exercise 6.5 || application of derivatives class 12 ncert solutions || ex 6.5 class 12 maths ncert solutions
Download the Math Ninja App Now
3D. Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:
\(f(x)=\sin x-\cos x, 0 < x < 2 \pi\)
Answer
\(\mathrm{f}(x)=\sin x-\cos x, 0 < x < 2 \pi\)
\(\mathrm{f}^{\prime}(x)=\cos x+\sin x\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow \cos x+\sin x=0\)
\(\Rightarrow \cos x=-\sin x\)
\(\Rightarrow \tan x=-1\)
\(\Rightarrow x=\frac{3 \pi}{4}, \frac{7 \pi}{4}, \in 2 \pi\)
\((x)=-\sin x+\cos x\)
\(f^{\prime \prime}\left(\frac{3 \pi}{4}\right)=-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=-\sqrt{2} < 0\)
\(f^{\prime \prime}\left(\frac{7 \pi}{4}\right)=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2} > 0\)
Then, by second derivative test,
\( \Rightarrow x=\frac{3 \pi}{4} \) is point of local maxima and the local maximum value of f at \( x=\frac{3 \pi}{4} \) is
\(f\left(\frac{3 \pi}{4}\right)=\sin \left(\frac{3 \pi}{4}\right)-\cos \left(\frac{3 \pi}{4}\right)=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}\)
And, \( \Rightarrow x=\frac{7 \pi}{4} \) is point of local minima and the local minimum value of f at \( x=\frac{7 \pi}{4} \) is
\(f\left(\frac{7 \pi}{4}\right)=\sin \frac{7 \pi}{4}-\cos \frac{7 \pi}{4}=-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=-\sqrt{2}\)
3E. Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be: \(f(x)=x^{3}-6 x^{2}+9 x+15\)
Answer
\(\mathrm{f}(x)=x^{3}-6 x^{2}+9 x+15\)
\(\Rightarrow \mathrm{f}^{\prime}(x)=3 x^{2}-12 x+9\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow 3 x^{2}-12 x+9=0\)
\(\Rightarrow 3(x-1)(x-3)=0\)
\(\Rightarrow x=1,3\)
\(\mathrm{~g}^{\prime \prime}(x)=6 x-12=6(x-2)\)
Now, \( f^{\prime}(1)=6(1-2)=-6 < 0 \)
and \( f^{\prime}(3)=6(3-2)=6 > 0 \)
Then, by second derivative test,
\( \Rightarrow x=1 \) is point of local maxima and local maximum of f at \( x=1 \) is \(f(1)=1^{3}-6+9+15=19\)
And,
\( x=3 \) is point of local minima and local minimum value of \( f \) at \( x=3 \) is \(f(3)=27-54+27+15=15\)
3F. Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:
\(\mathrm{g}(x)=\frac{x}{2}+\frac{2}{x}, x > 0\)
Answer
\(\mathrm{g}(x)=\frac{x}{2}+\frac{2}{x}, x > 0\)
\(\Rightarrow g^{\prime}(x)=\frac{1}{2}-\frac{2}{x^{2}}\)
\(\text { Now, } \mathrm{g}^{\prime}(x)=0\)
\(\Rightarrow \frac{1}{2}-\frac{2}{x^{2}}=0\)
\(\Rightarrow \frac{2}{x^{2}}=\frac{1}{2}\)
\(\Rightarrow x^{2}=4\)
\(\Rightarrow x= 2\)
Since \( x > 0 \), we take \( x=2 \)
\(g^{\prime}(x)=\frac{4}{x^{3}}\)
\(g^{\prime \prime}(2)=\frac{4}{2^{3}}=\frac{1}{2} > 0\)
Then, by second derivative test,
\( \Rightarrow x=2 \) is point of local minima and local minimum of \( g \) at \( x=2 \) is
\(g(2)=\frac{2}{2}+\frac{2}{2}=1+1=2\)
3G. Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:
\(g(x)=\frac{1}{x^{2}+2}\)
Answer
\(\mathrm{g}(x)=\frac{1}{x^{2}+2}\)
\(\Rightarrow g^{\prime}(x)=\frac{-2 x}{\left(x^{2}+2\right)^{2}}=0\)
\(\Rightarrow x=0\)
Now, for values close to \( x=0 \) and to the left of 0 ,
\( \mathrm{g}^{\prime}(x) > 0 \).
Also, for values close to \( x=0 \) and to the right of 0 ,
\(g^{\prime}(x) < 0\)
Then, by first derivative test,
\( \Rightarrow x=0 \) is point of local maxima and local maximum of g at \( x=0 \) is
\(g(0)=\frac{1}{0+2}=\frac{1}{2}\)
3H. Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:
\(\mathrm{f}(x)=x \sqrt{1-x} ; 0 < x < 1\)
Answer
\(\mathrm{f}(x)=x \sqrt{1-x} ; 0 < x < 1\)
\(\Rightarrow \mathrm{f}^{\prime}(x)=\sqrt{1-x}+x \frac{1}{2 \sqrt{1-x}}(-1)\)
\(\Rightarrow \sqrt{1-x}-\frac{1}{2 \sqrt{1-x}}\)
\(=\frac{2(1-x)-x}{2 \sqrt{1-x}}\)
\(=\frac{2-3 x}{2 \sqrt{1-x}}\)
\(\mathrm{f}^{\prime}(x)=0\)
\(\Rightarrow \frac{2-3 x}{2 \sqrt{1-x}}=0\)
\(\Rightarrow 2-3 x=0\)
\(\Rightarrow x=\frac{2}{3}\)
\(f^{\prime \prime}(x)=\frac{1}{2}\left[\frac{\sqrt{1-x}(-3)-(2-3 x)\left(\frac{-1}{2 \sqrt{1-x}}\right)}{1-x}\right]\)
\(=\left[\frac{\sqrt{1-x}(-3)+(2-3 x)\left(\frac{-1}{2 \sqrt{1-x}}\right)}{2(1-x)}\right]\)
\(=\left[\frac{-6(1-x)+(2-3 x)}{2(1-x)^{\frac{3}{2}}}\right]\)
\(=\frac{3 x-4}{4(1-x)^{\frac{3}{2}}}\)
\(f^{\prime \prime}\left(\frac{2}{3}\right)=\frac{2}{3} \sqrt{1-\frac{2}{3}}=\frac{2}{3} \sqrt{\frac{1}{3}}=\frac{2}{\sqrt[3]{3}}=\frac{2 \sqrt{3}}{9}\)
4A. Prove that the following functions do not have maxima or minima:
\(f(x)=e^{x}\)
Answer
\(f(x)=e^{x}\)
\(\Rightarrow f^{\prime}(x)=e^{x}\)
Now, if \( \mathrm{f}^{\prime}(x)=0 \), then \( \mathrm{e}^{x}=0 \).
But, the exponential function can never assume 0 for any value of \(x \). Therefore, there does not exist \( c \in R \) such that \( f^{\prime}(c)=0 \)
Hence, function f does not have maxima or minima.
4B. Prove that the following functions do not have maxima or minima:
\(\mathrm{g}(x)=\log x\)
Answer
\(\mathrm{g}(x)=\log x\)
\(\Rightarrow g^{\prime}(x)=\frac{1}{x}\)
Since, \( \log x \) is defined for a positive number \(x \),
\( \mathrm{g}^{\prime}(x) > 0 \) for any \(x \).
Therefore, there does not exist \( c \in R \) such that \( f^{\prime}(c)=0 \)
Hence, function f does not have maxima or minima.
4C. Prove that the following functions do not have maxima or minima:
\(\mathrm{h}(x)=x^{3}+x^{2}+x+1\)
Answer
\(\mathrm{h}(x)=x^{3}+x^{2}+x+1\)
\(\Rightarrow \mathrm{h}^{\prime}(x)=3 x^{2}+2 x+1\)
\(\mathrm{~h}(x)=0\)
\(\Rightarrow 3 x^{2}+2 x+1=0\)
\(\Rightarrow x=\frac{-2 \pm 2 \sqrt{2 i}}{6}\)
\(\Rightarrow \frac{-1 \pm \sqrt{2 i}}{3}, \notin R\)
Therefore, there does not exist \( \mathrm{c} \in \mathrm{R} \) such that \( \mathrm{h}^{\prime}(\mathrm{c})=0 \)
Hence, function \( h \) does not have maxima or minima.
5A. Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:
\(f(x)=x^{3}, x \in[-2,2]\)
Answer
It is given that \( f(x)=x^3, x \in[-2,2] \)
\(\Rightarrow \mathrm{f}^{\prime}(x)=3 x^{2}\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow x=0\)
Now, we evaluate the value of \( f \) at critical point \( x=0 \) and at end points of the interval \( [-2,2] \).
\(\mathrm{f}(0)=0\)
\(\mathrm{f}(-2)=(-2)^{3}=-8\)
\(\mathrm{f}(2)=(2)^{3}=8\)
Therefore, we have the absolute maximum value of \( f \) on \( [-2,2] \) is 8 occurring at \( x=2 \).
And, the absolute minimum value of f on \( [-2,2] \) is \(-8\) occurring at \( x=-2 \).
5B. Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:
\(\mathrm{f}(x)=\sin x+\cos x, x \in[0, \pi]\)
Answer
It is given that \( f(x)=\sin x+\cos x, x \in[0, \pi] \)
\(f^{\prime}(x)=\cos x-\sin x\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow \cos x-\sin x=0\)
\(\Rightarrow \cos x=\sin x\)
\(\Rightarrow \tan x=1\)
\(\Rightarrow x=\frac{\pi}{4}\)
Now, we evaluate the value of \( f \) at critical point \( x=\frac{\pi}{4} \) and at end points of the interval \( [0, \pi] \)
\(f^{\prime}\left(\frac{\pi}{4}\right)=\sin \frac{\pi}{4} \cos \frac{\pi}{4}=\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)=\frac{2}{\sqrt{2}}=\sqrt{2}\)
\(f(0)=\sin 0+\cos 0=0+1=1\)
\(f(\pi)=\sin \pi+\cos \pi=0-1=-1\)
Therefore, we have the absolute maximum value of f on \( [0, \pi] \) is \( \sqrt{2} \) occurring at \( x=\frac{\pi}{4} \).
And, the absolute minimum value of \( f \) on \( [0, \pi] \) is \(-1\) occurring at \( x=\pi \).
5C. Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:
\(\mathrm{f}(x)=4 x-\frac{1}{2} x^{2}, x \in\left[-2, \frac{9}{2}\right]\)
Answer
It is given that
\(\mathrm{f}(x)=4 x-\frac{1}{2} x^{2}, x \in\left[-2, \frac{9}{2}\right]\)
\(\Rightarrow f^{\prime}(x)=4-\frac{1}{2}(2 x)=4-x\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow x=4\)
Now, we evaluate the value of \( f \) at critical point \( x=0 \) and at end points of the interval \( \left[-2, \frac{9}{2}\right] \)
\(f(4)=16-\frac{1}{2}(16)=16-8=8\)
\(f(-2)=-8-\frac{1}{2}(4)=-8-2=-10\)
\(f\left(\frac{9}{2}\right)=4\left(\frac{9}{2}\right)-\frac{1}{2}\left(\frac{9}{2}\right)^{2}=18-\frac{81}{8}=18-10.125=7.875\)
Therefore, we have the absolute maximum value of f on \( \left[-2, \frac{9}{2}\right] \) is 8 occurring at \( x=4 \).
And, the absolute minimum value of \( f \) on \( \left[-2, \frac{9}{2}\right] \) is -10 occurring at \( x= \) -2 .
5D. Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals:
\(f(x)=(x-1)^{2}+3, x \in[-3,1]\)
Answer
It is given that \( f(x)=(x-1)^{2}+3, x \in[-3,1] \)
\(\Rightarrow \mathrm{f}^{\prime}(x)=2(x-1)\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow 2(x-1)\)
\(\Rightarrow x=1\)
Now, we evaluate the value of \( f \) at critical point \( x=1 \) and at end points of the interval \( [-3,1] \).
\(\mathrm{f}(1)=(1-1)^{2}+3=0+3=3\)
\(\mathrm{f}(-3)=(-3-1)^{2}+3=16+3=19\)
Therefore, we have the absolute maximum value of f on \( [-3,1] \) is 19 occurring at \( x=-3 \).
And, the absolute minimum value of \( f \) on \( [-3,1] \) is 3 occurring at \( x=1 \).
exercise 6.5 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 6 exercise 6.5 || class 12 maths exercise 6.5 || application of derivatives class 12 ncert solutions || ex 6.5 class 12 maths ncert solutions
Download the Math Ninja App Now
6. Find the maximum profit that a company can make, if the profit function is given by \(\mathrm{p}(x)=41-72 x-18 x^{2}\)
Answer
It is given that the profit function \( p(x)=41-72 x-18 x^{2} \)
\(\Rightarrow \mathrm{p}^{\prime}(x)=-72-36 x\)
and \( p^{\prime \prime}(x)=-36 \)
Now, \( g^{\prime}(x)=0 \)
\(72=-36 x\)
\(\Rightarrow x=\frac{-72}{36}\)
\(\Rightarrow x=-2\)
\(P^{\prime \prime}(-2)=-36 < 0\)
Then, by second derivative test,
\( x=-2 \) is point of local maxima of \( p \).
Therefore, Maximum Profit \( = \)
\(\mathrm{P}(-2)=41-72(-2)-18(-2)^{2}\)
\(=41+144-72\)
\(=113\)
Therefore, the maximum profit that the company can make is 113 units.
7. Find both the maximum value and the minimum value of \( 3 x^{4}-8 x^{3}+ \) \( 12 x^{2}-48 x+25 \) on the interval \( [0,3] \).
Answer
Let \( \mathrm{f}(x)=3 x^{4}-8 x^{3}+12 x^{2}-48 x+25, x \in[0,3] \)
\(\Rightarrow \mathrm{f}^{\prime}(x)=12 x^{3}-24 x^{2}+24 x-48\)
\(=12\left(x^{3}-2 x^{2}+2 x-4\right)\)
\(=12\left[x^{2}(x-2)+2(x-2)\right]\)
\(=12(x-2)\left(x^{2}+2\right)\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\( \Rightarrow x=2 \) or \( \left(x^{2}+2\right)=0 \) for which there are no real roots.
Therefore, we will only consider \( x=2 \)
Now, we evaluate the value of \( f \) at critical point \( x=2 \) and at end points of the interval \( [0,3] \).
\(\mathrm{f}(2)=3(2)^{4}-8(2)^{3}+12(2)^{2}-48(2)+25\)
\(=3(16)-8(8)+12(4)+25\)
\(=48-64+48-96+25\)
\(=-39\)
\(\mathrm{f}(0)=3(0)^{4}-8(0)^{3}+12(0)^{2}-48(0)+25\)
\(=0+0+0+25\)
\(=25\)
\(\mathrm{f}(3)=3(3)^{4}-8(3)^{3}+12(3)^{2}-48(3)+25\)
\(=3(81)-8(27)+12(9)+25\)
\(=243-216+108-144+25\)
\(=16\)
Therefore, we have the absolute maximum value of \( f \) on \( [0,3] \) is \(25\) occurring at \( x=0 \).
And, the absolute minimum value of \( f \) on \( [0,3] \) is \(-39\) occurring at \( x=2 \).
8. At what points in the interval \( [0,2 \pi] \), does the function \( \sin 2 x \) attain its maximum value?
Answer
It is given that \( f(x)=\sin 2 x, x \in[0,2 \pi] \)
\(\mathrm{f}^{\prime}(x)=2 \cos 2 x\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow \cos 2 x=0\)
\(\Rightarrow 2 x=0\)
\(\Rightarrow x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}\)
Now, we evaluate the value of f at critical point \( x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4} \) and at end points of the interval \( [0,2 \pi] \)
\(f^{\prime}\left(\frac{\pi}{4}\right)=\sin \frac{\pi}{2}-1\)
\(f^{\prime}\left(\frac{3 \pi}{4}\right)=\sin \frac{3 \pi}{2}=-1\)
\(f^{\prime}\left(\frac{5 \pi}{4}\right)=\sin \frac{5 \pi}{2}=1\)
\(f^{\prime}\left(\frac{7 \pi}{4}\right)=\sin \frac{7 \pi}{2}=-1\)
\(f(0)=\sin 0, f(2 \pi)=\sin 2 \pi=0\)
Therefore, we have the absolute maximum value of f on \( [0,2 \pi] \) is 1 occurring at
\(x=\frac{\pi}{4} \text { and } x=\frac{5 \pi}{4}\)
9. What is the maximum value of the function \( \sin x+\cos x \) ?
Answer
Let \( f(x)=\sin x+\cos x \)
\(\Rightarrow \mathrm{f}^{\prime}(x)=\cos x-\sin x\)
Now, \( f^{\prime}(x)=0 \)
\(\Rightarrow \cos x-\sin x=0\)
\(\Rightarrow \cos x=\sin x\)
\(\Rightarrow \tan x=1\)
\(\Rightarrow x=\frac{\pi}{4}, \frac{5 \pi}{4} \ldots \ldots \ldots\)
Now,
If \( f^{\prime}(x) \) will be negative when \( (\sin x+\cos x) > 0 \), means both \( \sin x \) and \(\cos x\) are positive.
And, we know that \( \sin x \) and \( \cos x \) both are positive in the first quadrant.
Then, \( \mathrm{f}^{\prime \prime} ( x ) \) will be negative when
\(X \in\left(0, \frac{\pi}{2}\right)\)
\(f^{\prime \prime}(x)=-\sin x-\cos x=-(\sin x+\cos x)\)
Now, let us take \( x=\frac{\pi}{4} \)
\(f^{\prime \prime}\left(\frac{\pi}{4}\right)=-\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)=-\frac{2}{\sqrt{2}}=-\sqrt{2} < 0\)
Then, by second derivative test,
\(f\) will be maximum at \( x=\frac{\pi}{4} \)
And, the maximum value of f is
\(f^{\prime}\left(\frac{\pi}{4}\right)=\sin \frac{\pi}{4}+\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}\)
10. Find the maximum value of \( 2 x^{3}-24 x+107 \) in the interval \( [1,3] \). Find the maximum value of the same function in \( [-3,-1] \).
Answer
Let \( f(x)=2 x^{3}-24 x+107, x \in[1,3] \)
\(\Rightarrow f^{\prime}(x)=6 x^{2}-24\)
\(=6\left(x^{2}-4\right)\)
Now, \( f^{\prime}(x)=0 \)
\(\Rightarrow 6\left(x^{2}-4\right)=0\)
\(\Rightarrow x^{2}=4\)
\(\Rightarrow x=2\)
Therefore, we will only consider the interval \( [1,3] \)
Now, we evaluate the value of \( f \) at critical point \( x=2 \epsilon[1,3] \) and at end points of the interval \( [1,3] \).
\(\mathrm{f}(2)=2(2)^{3}-24(2)+107\)
\(=2(8)-24(2)+107\)
\(=75\)
\(f(1) =2(1)^{3}-24(1)+107\)
\( =2-24+107\)
\( =85\)
\(f(3)=2(3)^{3}-24(3)+107\)
\(=2(27)-24(3)+107\)
\(=89\)
Therefore, we have the absolute maximum value of \( f \) on \( [1,3] \) is 89 occurring at \( x=3 \).
Now, we will only consider the interval \( [-3,-1] \)
Now, we evaluate the value of \( f \) at critical point \( x=-2 \epsilon[-3,-1] \) and at end points of the interval \( [1,3] \).
\(\mathrm{f}(-3)=2(-3)^{3}-24(-3)+107\)
\(= 2(-27)-24(-3)+107\)
\(= 125\)
\( f(-1)=2(-1)^{3}-24(-1)+107\)
\(= -2+24+107\)
\(= 129\)
\(f(-2)=2(-2)^{3}-24(-2)+107\)
\(= 2(-8)-24(-2)+107\)
\(=139\)
Therefore, we have the absolute maximum value of \( f \) on \( [-3,-1] \) is 89 occurring at \( x=-2 \).
11. It is given that at \( x=1 \), the function \( x^{4}-62 x^{2}+a x+9 \) attains its maximum value, on the interval \( [0,2] \). Find the value of a.
Answer
It is given that \( f(x)=x^{4}-62 x^{2}+a x+9 \)
Then, \( \mathrm{f}^{\prime}(x)=4 x^{3}-124 x+\mathrm{a} \)
It is given that function \( f \) attains its maximum value on the interval \( [0,2] \) at \( x=1 \).
\(\Rightarrow \mathrm{f}^{\prime}(1)=0\)
\(\Rightarrow 4-124+\mathrm{a}=0\)
\(\Rightarrow \mathrm{a}=120\)
Therefore, the value of a is 120 .
12. Find the maximum and minimum values of \( x+\sin 2 x \) on \( [0,2 \pi] \).
Answer
It is given that \( f(x)=x+\sin 2 x, x \in[0,2 \pi] \)
\( f^{\prime}(x)=1+2 \cos 2 x \)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\( \Rightarrow \cos 2 x=-\frac{1}{2}=-\cos \frac{\pi}{3}=\cos \left(\pi-\frac{\pi}{3}\right)=\cos \frac{2 \pi}{3} \)
\( 2 x=2 \pi \frac{2 \pi}{3}, \mathrm{n} \in \mathrm{Z} \)
\( \Rightarrow x=\mathrm{n} \pi \frac{\pi}{3}, \mathrm{n} \in \mathrm{Z} \)
\( \Rightarrow x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3} \in[0,2 \pi] \)
Now, we evaluate the value of f at critical point \( x=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3} \) and at end points of the interval \( [0,2 \pi] \)
\(f^{\prime}\left(\frac{\pi}{3}\right)=\frac{\pi}{3}+\sin \frac{2 \pi}{3}=\frac{\pi}{3}+\frac{\sqrt{3}}{2}\)
\(f^{\prime \prime}\left(\frac{\pi}{3}\right)=\frac{2 \pi}{3}+\sin \frac{4 \pi}{3}=\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\)
\(f^{\prime}\left(\frac{4 \pi}{3}\right)=\frac{4 \pi}{3}+\sin \frac{8 \pi}{3}=\frac{4 \pi}{3}+\frac{\sqrt{3}}{2}\)
\(f^{\prime}\left(\frac{5 \pi}{4}\right)=\frac{5 \pi}{3}+\sin \frac{10 \pi}{3}=\frac{5 \pi}{3}+\frac{\sqrt{3}}{2}\)
\(f^{\prime}(0)=0+\sin 0=0\)
\(f^{\prime}(2 \pi)=2 \pi+\sin 4 \pi=2 \pi+0=2 \pi\)
Therefore, we have the absolute maximum value of \( f \) on \( [0,2 \pi] \) is \( 2 \pi \) occurring at
\( x=2 \pi \) and absolute minimum value of \( f(x) \) in the interval \( [0,2 \pi] \) is 0 occuring at \( x=0 \).
13. Find two numbers whose sum is 24 and whose product is as large as possible.
Answer
Let one number be \(x \). Then, the other number is \( (24-x) \).
Let \( \mathrm{P}(x) \) denote the product of the two numbers.
Then, we get,
\(P(x)=x(24-x)=24 x-x^2\)
\(\Rightarrow P^{\prime}(x)=24-2 x\)
\(\Rightarrow P^{\prime \prime}(x)=-2\)
Now, \( P^{\prime}(x)=0 \)
\(\Rightarrow x=12\)
And
\(P^{\prime \prime}(12)=-2 < 0\)
Then, by second derivative test,
\( x=12 \) is the point of local maxima of P .
Therefore, the product of the numbers is the maximum when the numbers are 12 and \( 24-12=12 \).
14. Find two positive numbers \( x \) and \( y \) such that \( x+y=60 \) and \( x y^{3} \) is maximum.
Answer
Let the two numbers are \(x\) and \(y\) such that \( x+y=60 \)
\(\Rightarrow y=60-x\)
Let \( f(x)=xy^{3} \)
\(\Rightarrow \mathrm{f}(x)=x(60-x)^{3}\)
\(\Rightarrow f^{\prime}(x)=(60-x)^{3}-3 x(60-x)^{2}\)
\(=(60-x)^{2}[60-x-3 x]\)
\(=(60-x)^{2}[60-4 x]\)
And \( f^{\prime}(x)=-2(60-x)(60-4 x)-4(60-x)^{2} \)
\(=-2(60-x)[60-4 x+2(60-x)]\)
\(=-2(60-x)(180-6 x)\)
\(=-12(60-x)(30-x)\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow x=60 \text { or } x=15\)
When \( x=60, f^{\prime}(x)=0 \).
When \( x=15, f^{\prime}(x)=-12(60-15)(30-15)=-12 \times 45 \times 15 < 0 \)
Then, by second derivative test, \( x=15 \) is a point of local maxima of f . Then, function \( \mathrm{xy}^{3} \) is maximum when \( x=15 \) and \( y=60-15=45 \).
Therefore, required numbers are 15 and 45 .
15. Find two positive numbers \(x\) and \(y\) such that their sum is 35 and the product \( x^{2} y^{5} \) is a maximum.
Answer
Let one number be \( x \). Then, the other number is \( y=(35-x) \)
Let \( P(x)=x^{2} y^{5} \)
Then, we get, \( P(x) \)
\(=2 x(35-x)^{5}-5 x^{2}(35-x)^{4}\)
\(=x(35-x)^{4}[2(35-x)-5 x]\)
\(=x(35-x)^{4}[70-7 x]\)
\(=7 x(35-x)^{4}(10-x)\)
Now, \( \mathrm{P}^{\prime\prime} (x)=7(35-x)^{4}(10-x)+7 x\left[-(35-x)^{4}-4(35-x)^{3}(10-x)\right] \)
\(\left.=7(35-x)^{4}(10-x)-7 x(35-x)^{4}-28 x(35-x)^{3}(10-x)\right]\)
\(=7(35-x)^{3}[(35-x)(10-x)-x(35-x)-4 x(10-x)]\)
\(=7(35-x)^{3}\left[350-45 x+x^{2}-35 x+x^{2}-40 x+4 x^{2}\right]\)
\(=7(35-x)^{3}\left[6 x^{2}-120 x+350\right]\)
Now, \( P^{\prime}(x)=0 \)
\(\Rightarrow x=0,35,10\)
When \( x=0,35 \) This will make the product \(x^2 y^5\) equal to 0 .
Therefore, \( x=0,35 \) cannot be possible values of \( x \).
And when \( x=10 \)
Then, we have,
\(\mathrm{P}^{\prime \prime}(x)=7(35-10)^{3}\left[6(10)^{2}-120(10)+350\right]\)
\(=7(25)^{3}[-250] < 0\)
Then, by second derivative test,
\( x=10 \) and \( y=35-10=25 \) is the point of local maxima of \( P \).
Therefore, the required number are 10 and 25 .
16. Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.
Answer
Let one number be \(x \). Then, the other number is \( (16-x) \).
Let \( S(x) \) be the sum of these number. Then,
\(S(x)=x^{3}+(16-x)^{3}\)
\(\Rightarrow S^{\prime}(x)=3 x^{2}-3(16-x)^{2}\)
\(\Rightarrow S^{\prime \prime}(x)=6 x+6(16-x)\)
Now, \( S^{\prime}(x)=0 \)
\(\Rightarrow 3 x^{2}-3(16-x)^{2}=0\)
\(\Rightarrow x^{2}-(16-x)^{2}=0\)
\(\Rightarrow x^{2}-256-x^{2}+32 x=0\)
\(\Rightarrow x=8\)
Now, \( S^{\prime \prime}(8)=6(8)+6(16-8) \)
\(=48+48=96 > 0\)
Then, by second derivative test, \( x=8 \) is the point of local minima of \(S \).
Therefore, the sum of the cubes of the numbers is the minimum when the numbers are \(8\) and \( 16-8=8 \).
17. A square piece of tin of side 18 cm is to be made into a box without top, by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?
Answer
Let the side of the square to be cut off be \( x \), then, the length and the breadth of the box will be \( (18-x) \mathrm{cm} \) each and the height of the box is \(x\) cm .
Then, the volume \( \{\mathrm{V}(x)\} \) of the box is given by:
\(V(x)=x(18-x)^{2}\)
\(\Rightarrow V^{\prime}(x)=(18-x)^{2}-2 x(18-x)\)
\(=(18-x)[18-x-2 x]\)
\(=(18-x)(18-3 x)\)
Now, \(V^{\prime\prime} (x)=(18-x)(-3)+(18-3 x)(-1) \)
\(=-3(18-x)-(18-3 x)=-54+3 x-18+3 x=6 x-72\)
Now, \( V^{\prime}(x)=0 \)
\(\Rightarrow x=18 \text { or } 3\)
If \( x=18 \) then breadth becomes 0 which is not possible Therefore, \( x=3 \)
\(V^{\prime \prime}(3)=6.3-72=-\mathrm{ve}\)
Then, by second derivative test, \( x=3 \) is the point of maxima of \( V \).
Therefore, If we remove a square of side 3 cm from each corner of the square tin and make a box from the remaining sheet, then the volume of the box obtained is the largest possible.
18. A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum?
Answer
Let the side of the square to be cut off be \( x \), then, the height of the box is \(x\) and the length is \( 45-2 x \) and the breadth is \( 24-2 x \).
Then, the volume \( \{\mathrm{V}(x)\} \) of the box is given by:
\(V(x)=x(45-2 x)(24-x)\)
\(=x\left(1080-90 x-48 x+4 x^{2}\right)\)
\(=4 x^{3}-138 x^{2}+1080 x\)
\(\Rightarrow V^{\prime}(x)=12 x^{2}-276 x+1080\)
\(=12\left(x^{2}-23 x+90\right)\)
\(=12(x-18)(x-5)\)
Now, \( \mathrm{V}^{\prime\prime} \) \( (x)=24 x-276=12(2 x-23) \)
Now, \( V^{\prime}(x)=0 \)
\(\Rightarrow x=18 \text { or } 5\)
It is not possible to cut off a square of side 18 cm from each corner of the rectangular sheet. So, \( x \) cannot be equal to 18 .
Therefore, \( x=5 \)
\(V^{\prime \prime}(5)=12(10-23)=-156 < 0\)
Then, by second derivative test, \( x=5 \) is the point of maxima of V .
Therefore, the side of the square to be cut off to make the volume of the box maximum possible is 5 cm .
19. Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.
Answer
The figure is given below:

Let a rectangle of length 1 and breadth \( b \) be inscribed in the circle of radius a.
Then, the diagonal passes through the centre and is of length 2 acm .
Now, by Pythagoras theorem, we get,
\((2 a)^{2}=1^{2}+b^{2}\)
\(\Rightarrow b^{2}=4 a^{2}-1^{2}\)
\(\Rightarrow b=\sqrt{4 a^{2}-1^{2}}\)
Therefore, Area of rectangle, \( \mathrm{A}=1 \sqrt{4 a^{2}-1^{2}} \)
\(\Rightarrow \frac{d A}{d l}=\sqrt{4 a^{2}-1^{2}}+1 \frac{1}{2 \sqrt{4 a^{2}-1^{2}}}(-21)\)
\(=\sqrt{4 a^{2}-1^{2}}-\frac{1^{2}}{\sqrt{4 a^{2}-1^{2}}}\)
\(=\frac{4 a^{2}-1^{2}}{\sqrt{4 a^{2}-1^{2}}}\)
\( \frac{d^{2} A}{d 1^{2}}=\frac{\sqrt{4 a^{2}-1^{2}}(-4 I)-\left(4 a^{2}-21^{2}\right) \frac{(-21)}{2 \sqrt{4 a^{2}-1^{2}}}}{\left(\sqrt{4 a^{2}-1^{2}}\right)} \)
\(=\frac{\left(4 a^{2}-1^{2}\right)(-4 I)+1\left(4 a^{2}-21^{2}\right)}{\left(4 a^{2}-1^{2}\right)^{\frac{3}{2}}}\)
\(=\frac{-12 a^{2} 1+21^{3}}{\left(4 a^{2}-1^{2}\right)^{\frac{3}{2}}}\)
\(=\frac{-2 i\left(6 a^{2}-1^{2}\right)}{\left(4 a^{2}-1^{2}\right)^{\frac{3}{2}}}\)
\(\frac{d A}{d l}=0\)
Gives \( 4 a^{2}=21^{2} \)
\( \Rightarrow l=\sqrt{2} \mathrm{a} \)
\( \Rightarrow \mathrm{b}=\sqrt{4 a^{2}-2 a^{2}}=\sqrt{2 a^{2}}=\sqrt{2 a} \)
when \( l=\sqrt{2 a} \)
Then, \( =\frac{d^{2} A}{d I^{2}}=\frac{-2(\sqrt{2} a)\left(6 a^{2}-2 a^{2}\right)}{2 \sqrt{2} a^{3}}=\frac{-8 \sqrt{2} a^{3}}{2 \sqrt{2} a^{3}}=-4=0 \)
Then, by second derivative test, when \( l=\sqrt{2 a} \), then the area of the rectangle is the maximum.
Since, \( l=b=\sqrt{2 a} \),
Therefore, the rectangle is square.
Hence proved.
21. Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?
Answer
Let r be the radius and \( h \) be the height of the cylinder.
Let V be the volume of the cylinder. Then
\(\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}=100 \text { (given) }\)
\(\Rightarrow \mathrm{h}=\frac{100}{\pi \mathrm{r} 2}\)
hence, the surface area ( S ) of the cylinder is given by:
\(\mathrm{S}=2 \pi \mathrm{r}^{2}+2 \pi \mathrm{rh}\)
\(=2 \pi \mathrm{r}^{2}+\frac{200}{r}\)
Now,
\(\frac{d s}{d r}=4 \pi r-\frac{200}{r^{2}}, \frac{d^{2} s}{d r^{2}}=4 \pi+\frac{400}{r^{3}} < 0\)
If \( \frac{d s}{d r}=0 \Rightarrow \frac{200}{r^{2}} \Rightarrow r^{3}=\frac{200}{4 \pi}=\frac{50}{\pi} \Rightarrow \mathrm{r}=\left(\frac{50}{\pi}\right)^{\frac{1}{3}} \)
So, when \( \mathrm{r}=\left(\frac{50}{\pi}\right)^{\frac{1}{3}} \) then \( \frac{d^{2} S}{d r^{2}} > 0 \)
Then, by second derivative test, the surface area is the minimum when \( r \) \( =\left(\frac{50}{\pi}\right)^{\frac{1}{3}} \)
Now, when \( \mathrm{r}=\left(\frac{50}{\pi}\right)^{\frac{1}{3}} \) then \( \mathrm{h}=\frac{100}{\pi\left(\frac{50}{\pi}\right)^{\frac{1}{3}}}=2\left(\frac{50}{\pi}\right)^{\frac{1}{3}} \mathrm{~cm} \).
Therefore, the dimensions of the can which has the minimum surface area are \( \mathrm{r}=\left(\frac{50}{\pi}\right)^{\frac{1}{3}} \) and \( \mathrm{h}=2\left(\frac{50}{\pi}\right)^{\frac{1}{3}} \mathrm{~cm} \).
exercise 6.5 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 6 exercise 6.5 || class 12 maths exercise 6.5 || application of derivatives class 12 ncert solutions || ex 6.5 class 12 maths ncert solutions
Download the Math Ninja App Now
22. A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?
Answer
Let a piece of length 1 be cut from the given wire to make a square. Then, the other piece of wire to be made into a circle is of length \( (28-1) \mathrm{m} \).
Now, side of square \( =\frac{1}{4} \)
Let \( r \) be the radius of the circle,
Then, \( 2 \pi r=28-1 \)
\(\Rightarrow r=\frac{1}{2 \pi}(28-1)\)
Therefore, the required area (a) is given by
\( \mathrm{A}=( \) side of the square \( ) 2+\pi \mathrm{r}^{2} \)
\(=\frac{1^{2}}{16}+\pi\left[\frac{1}{2 \pi}(28-1)\right]^{2}\)
\(=\frac{1^{2}}{16}+\frac{1}{4 \pi}\left[(28-1)^{2}\right]\)
Then, \( \frac{d A}{d l}=\frac{21}{16}+\frac{2}{4 \pi}(28-1)(-1) \)
\(=\frac{1}{8}-\frac{2}{4 \pi}(28-1)\)
\(\frac{d^{2} A}{d l^{2}}=\frac{1}{8}-\frac{2}{2 \pi}(28-1)=0\)
Now, if \( \frac{d A}{d l}=0 \)
Then, \( \frac{1}{8}-\frac{2}{2 \pi}(28-1)=0 \)
\(\begin{array}{l}
\Rightarrow \frac{\pi 1-4(28-1)}{8 \pi}=0 \\
\Rightarrow(\pi+4) l-112=0 \\
\Rightarrow 1=\frac{112}{\pi+4}
\end{array}\)
So, when \( 1=\frac{112}{\pi+4} \)
Then, \( \frac{d^{2} A}{d l^{2}} > 0 \)
Then, by second derivative test, the area \( (\mathrm{A}) \) is the minimum when \( 1= \) \( \frac{112}{\pi+4} \).
Therefore, the combined area is the minimum when the length of the wire in making the square is \( \frac{112}{\pi+4} \mathrm{~cm} \) while the length of the wire in making the circle is \( 28-\frac{112}{\pi+4}=\frac{28 \pi}{\pi+4} \mathrm{~cm} \).
23. Prove that the volume of the largest cone that can be inscribed in a sphere of radius \( R \) is \( \frac{8}{27} \) of the volume of the sphere.
Answer
Let \( r \) and \( h \) be the radius and height of the cone respectively inscribed in a sphere of radius \( R \).
Let V be the volume of cone.
Then, \( \mathrm{V}=\frac{1}{3} \pi r^{2} \mathrm{~h} \)
And height of cone \( \mathrm{h}=\mathrm{R}+\sqrt{R^{2}-r^{2}} \)
\(\therefore \mathrm{V}=\frac{1}{3} \pi r^{2}\left(\mathrm{R}+\sqrt{R^{2}-r^{2}}\right)\)
Now, \( \frac{d V}{d r}=\frac{2}{3} \pi r R+\frac{2}{3} \pi r \sqrt{R^{2}-r^{2}}+\frac{1}{3} \pi r^{2} \cdot \frac{(-2 r)}{2 \sqrt{R^{2}-r^{2}}} \)
\( =\frac{2}{3} \pi r R+\frac{2}{3} \pi r \sqrt{R^{2}-r^{2}}+\frac{1}{3} \pi \frac{r^{3}}{\sqrt{R^{2}-r^{2}}} \)
\( =\frac{2}{3} \pi r R+\frac{2 \pi r\left(R^{2}-r^{2}\right)-\pi r^{3}}{\sqrt[3]{R^{2}-r^{2}}} \)
\( =\frac{2}{3} \pi r R+\frac{2 \pi r R^{2}-3 \pi r^{3}}{\sqrt[3]{R^{2}-r^{2}}} \)
\( \frac{d^{2} V}{d r^{2}}=\frac{2}{3} \pi r R+\frac{\sqrt[3]{R^{2}-r^{2}}\left(2 \pi R^{2}-9 \pi r^{2}\right)-\left(2 \pi r R^{2}-3 \pi r^{3}\right) \cdot \frac{(-2 r)}{\sqrt[6]{R^{2-r^{2}}}}}{9\left(R^{2}-r^{2}\right)} \)
\( =\frac{2}{3} \pi r R+\frac{9\left(R^{2}-r^{2}\right)\left(2 \pi R^{2}-9 \pi r^{2}\right)+\left(2 \pi r R^{2}-3 \pi r^{3}\right)}{27\left(R^{2}-r^{2}\right)} \)
Now, if \( \frac{d V}{d r}=0 \Rightarrow \frac{2}{3} \pi r R=-\left(\frac{2 \pi r R^{2}-3 \pi r^{3}}{\sqrt[3]{R^{2}-r^{2}}}\right) \)
After solving this we get, \( r^{2}=\frac{8}{9} R^{2} \)
So, when, \( r^{2}=\frac{8}{9} R^{2} \), then \( \frac{d^{2} V}{d r^{2}} < 0 \)
Then, by second derivative test, the volume of the cone is the maximum when \( r^{2}=\frac{8}{9} R^{2} \)
So, when,
\( r^{2}=\frac{8}{9} R^{2}, \mathrm{~h}=\mathrm{R}+\sqrt{R^{2}-\frac{8}{9} R^{2}}=\mathrm{R}+\sqrt{\frac{1}{9} R^{2}}=\mathrm{R}+\frac{R}{3}=\frac{4}{3} \mathrm{R} \)
Therefore, \( \mathrm{V}=\frac{1}{3} \pi\left(\frac{8}{9} R^{2}\right)\left(\frac{4}{3} \mathrm{R}\right) \)
\( =\frac{8}{27}\left(\frac{4}{3} \pi R^{2}\right)=\frac{8}{27} \times( \) volume of sphere \( ) \)
Therefore, the volume of the largest cone that can be inscribed in the sphere is \( \frac{8}{27} \) the volume of the sphere.
24. Show that the right circular cone of least curved surface and given volume has an altitude equal to \( \sqrt{2} \) time the radius of the base.
Answer
Let \( r \) and \( h \) be the radius and height of the cone respectively.
Then, the volume \( (\mathrm{V}) \) of the cone is given by:
\(\mathrm{V}=\frac{1}{3} \pi r^{2} \mathrm{~h} \Rightarrow \mathrm{h}=\frac{3 V}{\pi r^{2}}\)
The surface area \( (\mathrm{S}) \) of the cone
\(\mathrm{S}=\pi \mathrm{rl}\)
\(=\pi \mathrm{r} \sqrt{r^{2}+h^{2}}\)
\(=\pi \mathrm{r} \sqrt{r^{2}+\frac{9 V}{\pi^{2} r^{4}}}\)
\(=\pi \mathrm{r} \sqrt{\frac{\pi^{2} r^{6}+9 V^{2}}{\pi^{2} r^{4}}}\)
\(=\frac{\pi r}{\pi r^{2}} \sqrt{\pi^{2} r^{6}+9 V^{2}}\)
\(\text { Then, } \frac{d S}{d r}=\frac{r \cdot \frac{1}{2 \sqrt{\pi^{2} r^{6}+9 V^{2}}} \cdot 6 \pi^{2} r^{5}-\sqrt{\pi^{2} r^{6}+9 V^{2}}}{r^{2}}\)
\(=\frac{3 \pi^{2} r^{6}-\pi^{2} r^{6}-9 V^{2}}{r^{2} \sqrt{\pi^{2} r^{6}+9 V^{2}}}\)
\(=\frac{2 \pi^{2} r^{6}-9 V^{2}}{r^{2} \sqrt{\pi^{2} r^{6}+9 V^{2}}}\)
Now, if \( \frac{d S}{d r}=0 \Rightarrow 2 \pi^{2} r^{6}=9 V^{2} \Rightarrow r^{6}=\frac{9 V^{2}}{2 \pi^{2}} \)
So, when \( r^{6}=\frac{9 V^{2}}{2 \pi^{2}} \) then \( \frac{d^{2} s}{d r^{2}} > 0 \)
Then, by second derivative test, the surface area of the cone is the least when \( r^{6}=\frac{9 V^{2}}{2 \pi^{2}} \)
So when, \( r^{6}=\frac{9 V^{2}}{2 \pi^{2}} \),
then \( =\mathrm{h}=\frac{3 V}{\pi r^{2}}=\frac{3}{\pi r^{2}}\left(\frac{2 \pi^{2} r^{6}}{9}\right)^{\frac{1}{2}}=\frac{3}{\pi r^{2}} \cdot \frac{\sqrt{2} \pi r^{3}}{3}=\sqrt{2 r} \).
Therefore, for a given volume, the right circular cone of the least curved surface has an altitude equal to \( \sqrt{2} \) times the radius of the base.
25. Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is \( \tan ^{-1} \sqrt{2} \).
Answer
Let \( \theta\) be the semi-vertical angle of the cone.
Let \( \mathrm{r}, \mathrm{h} \) and \(l\) be the radius, height and the slant height of the cone respectively.
It is given that slant height is constant.
Now, \( \mathrm{r}=l \sin \theta\) and \( \mathrm{h}=l \cos \theta\)
Then, the volume of the cone \( (\mathrm{V}) \)
\(\mathrm{V}=\frac{1}{3} \pi r^{2} \mathrm{~h}\)
\(=\frac{1}{3} \pi\left(1^{2} \sin ^{2} \theta\right)(l \cos \theta)\)
\(=\frac{1}{3} \pi 1^{3} \sin ^{2} \theta \cos \theta\)
\(\therefore \frac{d V}{d \theta}=\frac{1^{3} \pi}{3}\left[\sin n^{2} \theta(-\sin \theta)+\cos \theta(2 \sin \theta \cos \theta)\right]\)
\(=\frac{1^{3} \pi}{3}\left[-\sin ^{3} \theta+2 \sin \theta \cos ^{2} \theta\right]\)
\(\frac{d V^{2}}{d \theta^{2}}=\frac{1^{3} \pi}{3}\left[\sin ^{2} \theta(-\sin \theta)+\cos \theta(2 \sin \theta \cos \theta)\right]\)
\(=\frac{1^{3} \pi}{3}\left[-\sin ^{3} \theta+2 \sin \theta \cos ^{2} \theta\right]\)
\(\frac{d V^{2}}{d \theta^{2}}=\frac{1^{3} \pi}{3}\left[-3 \sin ^{2} \theta \cos \theta+2 \cos ^{3} \theta-4 \sin ^{2} \theta \cos \theta\right]\)
\(=\frac{1^{3} \pi}{3}\left[2 \cos ^{3} \theta-7 \sin ^{2} \theta \cos \theta\right]\)
Now, if \( \frac{d V}{d \theta}=0 \)
\(\sin ^{3} \theta=2 \sin \theta \cos ^{2} \theta\)
\(\Rightarrow \tan ^{2} \theta=2\)
\(\Rightarrow \tan \theta=\sqrt{2}\)
\(\Rightarrow \theta=\tan ^{-1} \sqrt{2}\)
Now, when, \( \theta=\tan ^{-1} \sqrt{2} \tan ^{2} \theta=2 \) or \( \sin ^{2} \theta=2 \cos ^{2} \theta\).
Then, we get
\(\frac{d V^{2}}{d \theta^{2}}=\frac{1^{3} \pi}{3}\left[2 \cos ^{3} \theta-14 \cos ^{3} \theta\right]\)
\(=-4 \pi l^{3} \cos ^{3} \theta < 0 \text { for } \theta\epsilon\left[0, \frac{\pi}{2}\right]\)
Then, by second derivative test, the volume \( (\mathrm{V}) \) is the maximum when \( \theta=\tan ^{-1} \sqrt{2} \)
Therefore, the semi-vertical angle of the cone of the maximum volume and of given slant height is \( \tan ^{-1} \sqrt{2} \).
Hence Proved.
26. Show that semi-vertical angle of right circular cone of given surface area and maximum volume is \( \operatorname{Sin}^{-1}\left(\frac{1}{3}\right) \).
Answer
We know that total surface area of the cone \( =S=\pi r(1+r) \ldots(1)\)
and Volume of the cone \( (\mathrm{V})=\frac{1}{3} \pi r^{2} \mathrm{~h} \)
\(V^{2}=\frac{1}{9} \pi^{2} r^{4}\left(1^{2}-r^{2}\right)\)
Then by (1), we get,
\(V^{2}=\frac{1}{9} \pi^{2} r^{4}\left[\left(\frac{s}{\pi r}-r\right)^{2}-r^{2}\right]\)
\(=\frac{1}{9}\left(S\left(S r^{2}-2 \pi r^{4}\right)\right)\)
\(\mathrm{P}=\mathrm{V}^{2}\)
Now, differentiating P with respect to r , we get,
\(\frac{d P}{d r}=\frac{1}{9}\left(S\left(2 S r-8 \pi r^{3}\right)\right.\)
Now, if \( \frac{d P}{d r}=0 \), then
\(\mathrm{S}=4 \pi r^{2}\)
Now again differentiating with respect to r , we get \( \frac{d^{2} P}{d r^{2}} < 0 \)
Therefore, P is maximum when \( \mathrm{S}=4 \pi \mathrm{r}^{2} \)
And V is maximum when \( \mathrm{S}=4 \pi \mathrm{r}^{2} \)
\(\Rightarrow \pi r(1+r)=4 \pi r^{2}\)
\(\Rightarrow 1=3 r\)
\( \operatorname{Sin} \theta=\frac{r}{1}=\frac{1}{3} \)
\(\Rightarrow \theta=\operatorname{Sin}^{-1}\left(\frac{1}{3}\right)\)
Therefore, semi-vertical angle of right circular cone of given surface area and maximum volume is \( \operatorname{Sin}^{-1}\left(\frac{1}{3}\right) \).
Hence Proved.
27. The point on the curve \( x^{2}=2 y \) which is nearest to the point \( (0,5) \) is
A. \( (2 \sqrt{2}, 4) \) B. \( (2 \sqrt{2}, 0) \) C. \( (0,0) \) D. \( (2,2) \)
Answer
It is given that \( x^{2}=2 y \)
For each value of \(x \), the position of the point will be \( \left(x, \frac{x^{2}}{2}\right) \)
The distance \( \mathrm{d}(x) \) between the points \( \left(x, \frac{x^{2}}{2}\right) \) and \( (0,5) \) is given by:
\(\mathrm{d}(x)=\sqrt{(x-0)^{2}+\left(\frac{x^{2}}{2}-5\right)^{2}}\)
\(=\sqrt{x^{2}+\frac{x^{2}}{4}+25-5 x^{2}}\)
\(=\sqrt{\frac{x^{2}}{4}-4 x^{2}+25}\)
\(\therefore d^{\prime}(x)=\frac{\left(x^{3}-8 x\right)}{2 \sqrt{\frac{x^{4}}{4}-4 x^{2}+25}}\)
\(=\frac{\left(x^{3}-8 x\right)}{\sqrt{x^{4}-16 x^{2}+100}}\)
\(d^{\prime}(x)=0\)
\(\Rightarrow x^{3}-8 x=0\)
\(\Rightarrow x\left(x^{2}-8\right)=0\)
\(\Rightarrow x=0, \pm 2 \sqrt{2}\)
And,
\(d^{\prime \prime}(x)=\frac{\sqrt{x^{4}-16 x^{2}+100}\left(3 x^{2}-8\right)-\left(x^{3}-8 x\right) \cdot \frac{4 x^{3}-32 x}{2 \sqrt{x^{4}-16 x^{2}+100}}}{x^{4}-16 x^{2}+100}\)
\(=\frac{\left(x^{4}-16 x^{2}+100\right)\left(3 x^{2}-8\right)-2\left(x^{3}-8 x\right)\left(x^{3}-8 x\right)}{\left(x^{4}-16 x^{2}+100\right)^{\frac{3}{2}}}\)
So, now when \( x=0 \), then \( d^{\prime \prime}(x)=\frac{36(-8)}{6^{3}} < 0 \)
And when, \( x= \pm \sqrt[2]{2}, d^{\prime \prime}(x) > 0 \)
Then, by second derivative test, \( d(x) \) is minimum at \( x= \pm \sqrt[2]{2} \)
So when, \( x= \pm \sqrt[2]{2} \cdot y=\frac{(\sqrt[2]{2})^{2}}{2}=4 \)
Therefore, the point on the curve \( x^{2}=2 y \) which is nearest to the point \( (0,5) \) is \( ( \pm \sqrt[2]{2}, 4) \).
28 For all real values of \( x \), the minimum value of \( \frac{1-x+x^{2}}{1+x+x^{2}} \) is
A. 0 B. 1 C. 3 D. \( \frac{1}{3} \)
Answer
Let \( \mathrm{f}(x)=\frac{1-x+x^{2}}{1+x+x^{2}} \)
\(\therefore f^{\prime}(x)=\frac{\left(1+x+x^{2}\right)(-1+2 x)-\left(1-x+x^{2}\right)(1+2 x)}{\left(1+x+x^{2}\right)^{2}}\)
\( =\frac{2 x^{2}-2}{\left(1+x+x^{2}\right)^{2}} \)
\(=\frac{2\left(x^{2}-1\right)}{\left(1+x+x^{2}\right)^{2}}\)
Then, \( \mathrm{f}^{\prime}(x)=0 \)
\( \Rightarrow x^{2}=1 \)
\( \Rightarrow x=\pm 21 \)
Now, \( f^{\prime \prime}(x)=\frac{4\left(1+x+x^{2}\right)\left[\left(1+x+x^{2}\right) x-\left(x^{2}-1\right)(1+2 x)\right]}{\left(1+x+x^{2}\right)^{4}} \)
\( =\frac{4\left(x+x^{2}-x^{3}-x^{2}-2 x^{3}+1+2 x\right)}{\left(1+x+x^{2}\right)^{3}} \)
\( =\frac{4\left[1+2 x-x^{3}\right]}{\left(1+x+x^{2}\right)^{3}} \)
And, \(f {\prime \prime}(1)=\frac{4\left[1+2(1)-(1)^{3}\right]}{\left(1+1+1^{2}\right)^{3}}=\frac{4[3]}{(3)^{3}}=\frac{4}{9} > 0 \)
Also, \( f^{\prime\prime}(-1)=-4 < 0 \)
Then, by second derivative test, \( f \) is minimum at \( x=1 \) and the minimum value is given by
\( f(1)=\frac{1-1+1}{1+1+1}=\frac{1}{3} \)
29. The maximum value of is \( [x(x-1)+1]^{\frac{1}{3}}, 0 \leq x \leq 1 \)
A. \( \left(\frac{1}{3}\right)^{\frac{1}{3}} \) B. \( \frac{1}{2} \) C. 1 D. 0
Answer
Let \( \mathrm{f}(x)=[x(x-1)+1]^{\frac{1}{3}} \)
\(\therefore f^{\prime}(x)=\frac{2 x-1}{3[[x(x-1)+1]]^{\frac{2}{3}}}\)
Now, if \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow x=\frac{1}{2}\)
Then, we evaluate the value of \( f \) at critical point \( x=\frac{1}{2} \) and at the end points of the interval \( [0,1] \).
\(f(0)=[0(0-1)+1]^{\frac{1}{3}}=1\)
\( f(1)=[1(1-1)+1]^{\frac{1}{3}}=1 \)
\(f\left(\frac{1}{2}\right)=\left[\frac{1}{2}\left(\frac{1}{2}-1\right)+1\right]^{\frac{1}{3}}=\left(\frac{3}{4}\right)^{\frac{1}{3}}\)
Therefore, we can conclude that the maximum value of in the interval \( [0,1] \) is \(1\).
exercise 6.5 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 6 exercise 6.5 || class 12 maths exercise 6.5 || application of derivatives class 12 ncert solutions || ex 6.5 class 12 maths ncert solutions
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top