Ex 9.4 Class 11 Maths Ncert Solutions

Ex 9.4 class 11 maths ncert solutions | Class 11 rd sharma exercise 9.4 solutions | class 11 maths exercise 9.4 solutions | exercise 9.4 class 11 maths solutions | class 11 ch 9 exercise 9.4 solutions | class 11 chapter 9 exercise 9.4 solution | class 11 maths ncert solutions chapter 9 | ncert solutions for class 11 maths chapter 9 | ncert exemplar class 11 maths | sequences and series class 11 ncert solutions

ChatGPT said:

Looking for Ex 9.4 Class 11 Maths NCERT Solutions? You’re in the right place! This section offers clear, step-by-step solutions for all the questions from Exercise 9.4 of Chapter 9 – Sequences and Series. These solutions are prepared as per the latest NCERT syllabus and cover advanced concepts like special series, sums of squares, and sums of cubes of natural numbers — topics that are important for exams and higher studies. Whether you’re checking your work with Class 11 Ch 9 Exercise 9.4 solutions, referring to RD Sharma Exercise 9.4 Solutions, or practicing questions from the NCERT Exemplar Class 11 Maths, these explanations will strengthen your understanding. View or download the full Class 11 Maths NCERT Solutions Chapter 9 and master the topic of Sequences and Series Class 11 with confidence!

ex 9.4 class 11 maths ncert solutions
class 11 ch 9 exercise 9.4 solutions || class 11 maths ncert solutions chapter 9 || Class 11 rd sharma exercise 9.4 solutions || ncert exemplar class 11 maths || exercise 9.4 class 11 maths solutions || class 11 maths exercise 9.4 solutions || sequences and series class 11 ncert solutions || ncert solutions for class 11 maths chapter 9 || ex 9.4 class 11 maths ncert solutions || class 11 chapter 9 exercise 9.4 solution
Download the Math Ninja App Now

Exercise 9.4

1. Find the sum to n terms of the series \( 1 \times 2+2 \times 3+3 \times 4+ 4 \times 5+\ldots \)
Answer
The given series is \( 1 \times 2+2 \times 3+3 \times 4+4 \times 5+\ldots {n}^{\text {th}} \) term, \( {a}_{{n}}={n}({n}+ 1)\)
\({S}_{{n}}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} k(k+1)\)
\(=\sum_{k=1}^{n} k^{2}+\sum_{k=1}^{n} k\)
\(=\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}\)
\(=\frac{n(n+1)}{2}\left[\frac{2 n+1}{3}+1\right]\)
\(=\frac{n(n+1)}{2}\left(\frac{2 n+4}{3}\right)\)
\(=\frac{n(n+1)(n+2)}{3}\)
2. Find the sum to n terms of the series \( 1 \times 2 \times 3+2 \times 3 \times 4+ 3 \times 4 \times 5+\ldots\)
Answer
The given series is \( 1 \times 2 \times 3+2 \times 3 \times 4+3 \times 4 \times 5+\ldots {n}^{\text {th}} \) term
\(={a}_{{n}}={n}({n}+1)({n}+2)\)
\(=\left({n}^{2}+{n}\right)({n}+2)\)
\(={n}^{3}+3 {n}^{2}+2 {n}\)
\({S}_{{n}}=\sum_{k=1}^{n} a_{k}\)
\(=\sum_{k=1}^{n} k^{3}+3 \sum_{k=1}^{n} k^{2}+2 \sum_{k=1}^{n} k\)
\(=\left[\frac{n(n+1)}{2}\right]^{2}+\frac{3 n(n+1)(2 n+1)}{6}+\frac{2 n(n+1)}{2}\)\(=\left[\frac{n(n+1)}{2}\right]^{2}+\frac{n(n+1)(2 n+1)}{2}+n(n+1)\)
\(=\frac{n(n+1)}{2}\left[\frac{n(n+1)}{2}+2 n+1+2\right]\)
\(=\frac{n(n+1)}{2}\left[\frac{n^{2}+n+4 n+6}{2}\right]\)
\(=\frac{n(n+1)}{4}\left(n^{2}+5 n+6\right)\)
\(=\frac{n(n+1)}{4}\left(n^{2}+2 n+3 n+6\right)\)
\(=\frac{n(n+1)[n(n+2)+3(n+2)]}{4}\)
\(=\frac{n(n+1)(n-2)(n-3)}{4}\)
3. Find the sum to \( n \) terms of the series \( 3 \times 1^{2}+5 \times 2^{2}+7 \times 3^{2} +\ldots \)
Answer
The given series is \( 3 \times 1^{2}+5 \times 2^{2}+7 \times 3^{2}+\ldots {n}^{\text {th}} \) term
\({a}_{{n}}=(2 {n}+1) {n}^{2}=2 {n}^{3}+{n}^{2}\)
\({S}_{{n}}=\sum_{k=1}^{n} a_{k}\)
\(=\sum_{k=1}^{n}\left(2 k^{3}+k^{2}\right)=2 \sum_{k=1}^{n} k^{3}+\sum_{k=1}^{n} k^{2}\)
\(=2\left[\frac{n(n+1)}{2}\right]^{2}+\frac{n(n+1)(2 n+1)}{6}\)
\(=\frac{n^{2}(n+1)^{2}}{2}+\frac{n(n+1)(2 n+1)}{6}\)
\(=\frac{n(n+1)}{2}\left[n(n+1)+\frac{2 n+1}{3}\right]\)
\(=\frac{n(n+1)}{2}\left[\frac{3 n^{2}+3 n+2 n+1}{3}\right]\)
\(=\frac{n(n+1)}{2}\left[\frac{3 n^{2}+5 n+1}{3}\right]\)
\(=\frac{n(n+1)\left(3 n^{2}+5 n+1\right)}{6}\)
4. Find the sum to \( n \) terms of the series \( \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots \)
Answer
The given series is \( \frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots \)
\( {n}^{\text {th}} \) term, an \( =\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}\quad \) [By partial fractions]
\( a_{1}=\frac{1}{1}-\frac{1}{2} \)
\( {a}_{2}=\frac{1}{2}-\frac{1}{3} \)
\( {a}_{3}=\frac{1}{3}-\frac{1}{4} \ldots \)
\( {a}_{{n}}=\frac{1}{n}-\frac{1}{n+1} \)
Adding the above terms column wise, we obtain
\(={a}_{1}+{a}_{2}+\ldots+{a}_{{n}}=\left[\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots \frac{1}{n}\right]-\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots \frac{1}{n+1}\right]\)
\({S}_{{n}}=1-\frac{1}{n+1}=\frac{n+1-1}{n+1}=\frac{n}{n+1}\)
5. Find the sum to \( n \) terms of the series \( 5^{2}+6^{2}+7^{2}+\ldots+20^{2} \)
Answer
The given series is \( 5^{2}+6^{2}+7^{2}+\ldots+20^{2} n^{th}\) term
\({a}_{{n}}=({n}+4)^{2}={n}^{2}+8 {n}+16\)
\({S}_{{n}}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n}\left(k^{2}+8 k+16\right)\)
\(=\sum_{k=1}^{n} k^{2}+8 \sum_{k=1}^{n} k+\sum_{k=1}^{n} 16\)
\(=\frac{n(n+1)(2 n+1)}{6}+\frac{8 n(n+1)}{2}+16 n\)
\( 16^{\text {th}} \) term is \( (16+4)^{2}=20^{2} \)
\(S_{n}=\frac{16(16+1)(2 \times 16+1)}{6}+\frac{8 \times 16 \times(16+1)}{2}+16 \times 16\)
\(=\frac{(16)(17)(33)}{6}+\frac{(8)(16)(17)}{2}+16 \times 16\)
\(=1496+1088+256\)
\(=2840\)
\(5^{2}+6^{2}+7^{2}+\ldots+20^{2}=2840\)
6. Find the sum to \( n \) terms of the series \( 3 \times 8+6 \times 11+9 \times 14 +\ldots \)
Answer
The given series is \( 3 \times 8+6 \times 11+9 \times 14+\ldots a^{n }\)
\(=\left({n}^{\text {th}} \text { term of } 3,6,9 \ldots\right) \times\left({n}^{\text {th}}\text { term of } 8,11,14\ldots\right)\)
\(=(3 {n})(3 {n}+5)\)
\(=9 {n}^{2}+15 {n}\)
\({S}_{{n}}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n}\left(9 k^{2}+15 k\right)\)
\(=9 \sum_{k=1}^{n} 2+15 \sum_{k=1}^{n} k\)
\(=9 \times \frac{n(n+1)(2 n+1)}{6}+15 \times \frac{n(n+1)}{2}\)
\(=\frac{3 n(n+1)(2 n+1)}{2}+\frac{15 n(n+1)}{2}\)
\(=\frac{3 n(n+1)}{2}(2 {n}+1+5)\)
\(=\frac{3 n(n+1)}{2}(2 n+6)\)
\(=3 {n}({n}+1)({n}+3)\)
class 11 ch 9 exercise 9.4 solutions || class 11 maths ncert solutions chapter 9 || Class 11 rd sharma exercise 9.4 solutions || ncert exemplar class 11 maths || exercise 9.4 class 11 maths solutions || class 11 maths exercise 9.4 solutions || sequences and series class 11 ncert solutions || ncert solutions for class 11 maths chapter 9 || ex 9.4 class 11 maths ncert solutions || class 11 chapter 9 exercise 9.4 solution
Download the Math Ninja App Now
7. Find the sum to \( n \) terms of the series \( 1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2} +3^{2}\right)+\ldots \)
Answer
The given series is \( 1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{3}\right)+\ldots a^{n }\)
\(=\left(1^{2}+2^{2}+3^{3}+\ldots+n^{2}\right)\)
\(=\frac{n(n+1)(2 n+1)}{6}\)
\(=\frac{n\left(2 n^{2}+3 n+1\right)}{6}=\frac{2^{3}+3 n^{2}+n}{6}\)
\(=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n\)
\({S}_{{n}}=\sum_{k=1}^{n} a_{k}\)
\(=\sum_{k=1}^{n}\left[\frac{1}{3} k^{3}+\frac{1}{2} k^{2}+\frac{1}{6} k\right]\)
\(=\frac{1}{3} \sum_{k=1}^{n} k^{3}+\frac{1}{2} \sum_{k=1}^{n} k^{2}+\frac{1}{6} \sum_{k=1}^{n} k\)
\(=\frac{1}{3} \frac{n^{2}(n+1)^{2}}{(2)^{2}}+\frac{1}{2} \times \frac{n(n+1)(2 n+1)}{6}+\frac{1}{6} \times \frac{n(n+1)}{2}\)
\(=\frac{n(n+1)}{6}\left[\frac{n(n+1)}{2}+\frac{(2 n+1)}{2}+\frac{1}{2}\right]\)
\(=\frac{n(n+1)}{6}\left[\frac{n^{2}+n+2 n+1+1}{2}\right]\)
\(=\frac{n(n+1)}{6}\left[\frac{n^{2}+n+2 n+2}{2}\right]\)
\(=\frac{n(n+1)}{6}\left[\frac{n(n+1)+2(n+1)}{2}\right]\)
\(=\frac{n(n+1)}{6}\left[\frac{(n+1)(n+2)}{2}\right]\)
\(=\frac{n(n+1)^{2}(n+2)}{12}\)
8. Find the sum to n terms of the series whose \( {n}^{\text {th}} \) term is given by \( n(n+1)(n+4) \).
Answer
\({a}_{{n}}={n}({n}+1)({n}+4)={n}\left({n}^{2}+5 {n}+4\right)={n}^{3}+5 {n}^{2}+4 {n}\)
\({S}_{{n}}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} k^{3}+5 \sum_{k=1}^{n} k^{2}+4 \sum_{k=1}^{n} k\)
\(=\frac{n^{2}(n+1)^{2}}{4}+\frac{5 n(n+1)(2 n+1)}{6}+\frac{4 n(n+1)}{2}\)
\(=\frac{n(n+1)}{2}\left[\frac{n(n+1)}{2}+\frac{5(2 n+1)}{3}+4\right]\)
\(=\frac{n(n+1)}{2}\left[\frac{3 n^{2}+3 n+20 n+10+24}{6}\right]\)
\(=\frac{n(n+1)}{2}\left[\frac{3 n^{2}+23 n+34}{6}\right]\)
\(=\frac{n(n+1)\left(3 n^{2}+23 n+34\right)}{12}\)
9. Find the sum to n terms of the series whose \(n^{th}\) terms is given by \( {n}^{2}+2^{n} \)
Answer
\({a}_{{n}}={n}^{2}+2^{{n}}\)
\({S}_{{n}}=\sum_{k=1}^{n} k^{2}+2^{k}=\sum_{k=1}^{n} k^{2}+\sum_{k-1}^{n} 2^{k} \ldots(1)\)
Consider \( \sum_{k=1}^{n} 2^{k}=2^{1}+2^{2}+2^{3}+\ldots \)
The above series \( 2,2^{2}, 2^{3}, \ldots \) is a G.P. with both the first term and common ratio equal to \(2 \).
\(=\sum_{k=1}^{n} 2^{k}=\frac{(2)\left[(2)^{n}-1\right]}{2-1}=2\left(2^{{n}}-1\right) \ldots(2)\)
Therefore, from (1) and (2), we obtain
\({S}_{{n}}=\sum_{k=1}^{n} k^{2}+2\left(2^{{n}}-1\right)=\frac{n(n+1)(2 n+1)}{6}+2\left(2^{{n}}-1\right)\)
10. Find the sum to n terms of the series whose \( {n}^{\text {th}} \) terms is given by \((2 n-1)^{2}\)
Answer
\({a}_{{n}}=(2 {n}-1)^{2}=4 {n}^{2}-4 {n}+1\)
\({S}_{{n}}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n}\left(4 k^{2}-4 k+1\right)\)
\(=4 \sum_{k=1}^{n} k^{2}-4 \sum_{k=1}^{n} k+\sum_{k=1}^{n} 1\)
\(=\frac{4 n(n+1)(2 n+1)}{6}-\frac{4 n(n+1)}{2}+n\)
\(=\frac{2 n(n+1)(2 n+1)}{3}-2 {n}({n}+1)+{n}\)
\(={n}\left[\frac{2\left(2 n^{2}+3 n+1\right)}{3}-2(n+1)+1\right]\)
\(={n}\left[\frac{4 n^{2}+6 n+2-6 n-6+3}{3}\right]\)
\(={n}\left[\frac{4 n^{2}-1}{3}\right]\)
\(=\frac{n(2 n+1)(2 n-1)}{3}\)
class 11 ch 9 exercise 9.4 solutions || class 11 maths ncert solutions chapter 9 || Class 11 rd sharma exercise 9.4 solutions || ncert exemplar class 11 maths || exercise 9.4 class 11 maths solutions || class 11 maths exercise 9.4 solutions || sequences and series class 11 ncert solutions || ncert solutions for class 11 maths chapter 9 || ex 9.4 class 11 maths ncert solutions || class 11 chapter 9 exercise 9.4 solution
Download the Math Ninja App Now

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top