Ncert Solutions Class 11 Maths Complex Numbers Miscellaneous

Ncert solutions class 11 maths complex numbers miscellaneous | class 11 maths ch 5 miscellaneous exercise solutions | class 11 maths chapter 5 miscellaneous exercise​ | class 11 maths Complex Number and Quadratic Equation | ncert solution for class 11 maths chapter 5 | ncert exemplar class 11 maths

Looking for NCERT Solutions Class 11 Maths Complex Numbers Miscellaneous Exercise? You’re in the right place! This section offers complete, step-by-step solutions for all questions from the Miscellaneous Exercise of Chapter 5 – Complex Numbers and Quadratic Equations. These solutions follow the latest NCERT syllabus and cover key topics like the algebra of complex numbers, modulus and argument, polar forms, and solving quadratic equations with complex roots. Whether you’re revising from the Class 11 Maths Ch 5 Miscellaneous Exercise solutions or practicing problems from the NCERT Exemplar Class 11 Maths, these explanations will help you build a solid conceptual foundation. Download or view the NCERT Solution for Class 11 Maths Chapter 5 and master Complex Numbers and Quadratic Equations with confidence!

ncert solutions class 11 maths complex numbers miscellaneous
ncert solutions class 11 maths complex numbers miscellaneous || class 11 maths ch 5 miscellaneous exercise solutions || ncert exemplar class 11 maths || class 11 maths Complex Number and Quadratic Equation || class 11 maths chapter 5 miscellaneous exercise​ || ncert solution for class 11 maths chapter 5
Download the Math Ninja App Now

Miscellaneous Exercise

1. Evaluate: \( \left[i^{28}+\left(\frac{1}{i}\right)^{25}\right]^{3} \)
Answer
\( \left[i^{28}+\left(\frac{1}{i}\right)^{25}\right]^{3} \)
\(=\left[i^{4+4+2}+\frac{1}{(i)^{4+2+1}}\right]^{3}\)
\(=\left[\left(i^{4}\right)^{6} \cdot i^{2}+\frac{1}{\left(i^{4}\right)^{6} \cdot i}\right]^{3}\)
\(=\left[i^{2}+\frac{1}{i}\right]^{3}\left[i^{4}=1\right]\)
\(=\left[-1+\frac{1}{i} \times \frac{i}{i}\right]^{3}\left[i^{2}=-1\right]\)
\(=\left[-1+\frac{i}{i^{2}}\right]^{3}\)
\(=[-1-i]^{3}\)
\(=(-1)^{3}[1+i]^{3}\)
\(=-\left[1^{3}+i^{3}+3 \cdot 1 \cdot i(1+i)\right]\)
\(=-\left[1+i^{3}+3 i+3 i^{2}\right]\)
\(=-[-2+2 \mathrm{i}]\)
\(=2-2 \mathrm{i}\)
2. For any two complex numbers \( z_{1} \) and \( z_{2} \), prove that
\( \operatorname{Re}\left(\mathrm{z}_{1} \mathrm{z}_{2}\right)=\operatorname{Re} \mathrm{z}_{1} \operatorname{Re} \mathrm{z}_{2}-\operatorname{Im} \mathrm{z}_{1} \operatorname{IMz_{2}} \)
Answer
It is given in the question that,
\( z_{1} \) and \( z_{2} \) are two complex numbers and we have to prove that:
\( \operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Rez}_{1} \operatorname{Rez}_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2} \)
For this, firstly let \( z_{1}=x_{1}+i y_{1} \) and \( z_{2}=x_{2}+i y_{2} \)
Thus, \( z_{1} z_{2}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right) \)
\(\begin{array}{l}
=x_{1}\left(x_{2}+\mathrm{iy}_{2}\right)+\mathrm{iy}_{1}\left(x_{2}+\mathrm{iy}_{2}\right) \\
=x_{1} x_{2}+\mathrm{ix}_{1} y_{2}+\mathrm{iy}_{1} x_{2}+\mathrm{i}_{2} y_{1} y_{2} \\
=x_{1} x_{2}+\mathrm{ix}_{2} y_{2}+\mathrm{iy}_{1} x_{2}-y_{1} y_{2}\left(\mathrm{i}_{2}=-1\right) \\
=\left(x_{1} x_{2}-y_{1} y_{2}\right)+\mathrm{i}\left(x_{1} y_{2}+y_{1} x_{2}\right) \\
=\operatorname{Re}\left(z_{1} z_{2}\right)=x_{1} x_{2}-y_{1} y_{2} \\
\therefore \operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re} \mathrm{Re}_{1} \operatorname{Rez}_{2}-\operatorname{Im} \mathrm{I}_{1} \operatorname{Im} z_{2}
\end{array}\)
Hence, proved
3. Reduce \( \left\{\frac{1}{1-4 i}-\frac{2}{1+i}\right\}\left\{\frac{3-4 i}{5+i}\right\} \) to the standard form.
Answer
\(=\left\{\frac{1}{1-4 i}-\frac{2}{1+i}\right\}\left\{\frac{3-4 i}{5+i}\right\}=\left[\frac{(1+i)-2(1-4 i)}{(1-4 i)(1+i)}\right]\left[\frac{3-4 i}{5+i}\right]\)
\(=\left[\frac{1+i-2+8 i}{1+i-4 i-4 i^{2}}\right]\left[\frac{3-4 i}{5+i}\right]=\left[\frac{-1+9 i}{5-3 i}\right]\left[\frac{3-4 i}{5+i}\right]\)
\(=\left[\frac{-3+4 i+27 i-36 i^{2}}{25+5 i-15 i-3 i^{2}}\right]=\frac{33+31 i}{28-10 i}=\frac{33+31 i}{2(14-5 i)}\)
\( =\frac{(33+31 i)}{2(14-5 i)} \times \frac{14+5 i}{14+5 i} \) [on multiplying by numerator and denominator by
\( 14-5 i \)
\(=\frac{462+165 i+434 i+155 i^{2}}{2\left[(14)^{2}-(5 i)^{2}\right]}=\frac{307+533 i}{2\left(196-25 i^{2}\right)}\)
\(=\frac{307+599 i}{2(221)}=\frac{307+599 i}{442}=\frac{307}{442}+\frac{599 i}{442}\)
This is the required standard from.
4. If \( \mathrm{x}-i \mathrm{y}=\sqrt{\frac{a-i b}{c-i d}} \) prove that \( \left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}} \)
Answer
\(\mathrm{x}-i \mathrm{y}=\sqrt{\frac{a-i b}{c-i d}}\)
\(=\sqrt{\frac{a-i b}{c-i d} \times \frac{c+i d}{c+i d}}[\text { on multiplying numerator and denominator by }(\mathrm{c}+\mathrm{id})]\)
\(=\sqrt{\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}}\)
\(=(x-i y)^{2}=\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}\)
\(=\mathrm{x}^{2}-\mathrm{y}^{2}-2 \mathrm{ixy}=\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}\)
On comparing real and imaginary parts, we obtain
\(\mathrm{X}_{2}-\mathrm{Y}_{2}=\frac{a c+b d}{c^{2}+d^{2}},-2 x y=\frac{a d-b c}{c^{2}+d^{2}}\)
\(\qquad\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}-4 x^{2} y^{2}\ldots(1)\)
\(\left\{\frac{a c+b d}{c^{2}+d^{2}}\right\}^{2}+\left\{\frac{a d-b c}{c^{2}+d^{2}}\right\}[\text { using }(1)]\)
\(=\frac{a^{2} c^{2}+b^{2} d^{2}+2 a c b d+a^{2} d^{2}+b^{2} c^{2}-2 a d b c}{\left(c^{2}+d^{2}\right)^{2}}\)
\(=\frac{a^{2} c^{2}+b^{2} d^{2}+a^{2} d^{2}+b^{2} c^{2}}{\left(c^{2}+d^{2}\right)^{2}}\)
\(=\frac{a^{2}\left(c^{2}+d^{2}\right)+b^{2}\left(c^{2}+d^{2}\right)}{\left(c^{2}+d^{2}\right)^{2}}\)
\(=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}\)
Hence, prove

5.

(i) Convert the following in the polar form: \( \frac{1+7 i}{(2-i)^{2}} \)
Answer
Here, \( \mathrm{Z}=\frac{1+7 i}{(2-i)^{2}} \)
\(=\frac{1+7 i}{(2-i)^{2}}=\frac{1+7 i}{4+i^{2}-4 i}=\frac{1+7 i}{4-1-4 i}\)
\(=\frac{1+7 i}{3-4 i} \times \frac{3+4 i}{3+4 i}=\frac{3+4 i+21 i+28 i^{2}}{3^{2}+4^{2}}\)
\(=\frac{3+4 i+21 i-28}{25}=\frac{-25+25 i}{25}\)
\(=-1+i\)
Let \( r \cos \theta=-1 \) and \( r \sin \theta=1 \)
On squaring and adding, we obtain \( r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1 \)
\(=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2\)
\(=r^{2}=2\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]\)
\(=r=\sqrt{2}\)
\( \therefore \sqrt{2} \cos \theta=-1 \) and \( \sqrt{2} \sin \theta=1 \)
\( =\cos \theta=\frac{-1}{\sqrt{2}} \) and \( \sin \theta=\frac{1}{\sqrt{2}} \)
\( \therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4} \)
[As \( \theta \) lies in II quadrant]
\( \therefore \mathrm{z}=\mathrm{r} \cos \theta+i \mathrm{r} \sin \theta \)
\( =\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4}=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right) \)
This is the required polar form.
(ii) Convert the following in the polar form: \( \frac{1+3 i}{1-2 i} \)
Answer
Here, \( \mathrm{z}=\frac{1+3 i}{1-2 i} \)
\(=\frac{1+3 i}{1-2 i} \times \frac{1+2 i}{1+2 i}\)
\(=\frac{1+2 i+3 i-6}{1+4}\)
\(=\frac{-5+5 i}{5}=-1+i\)
Let, \( r \cos \theta=-1 \) and \( r \sin \theta=1 \)
On squaring and adding, we obtain
\(r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1\)
\(=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2\)
\(=r^{2}=2\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]\)
\(=r=\sqrt{2}\)
\(\therefore \sqrt{2} \cos \theta=-1 \text { and } \sqrt{2} \sin \theta=1\)
\(=\cos \theta=\frac{-1}{\sqrt{2}} \text { and } \sin \theta=\frac{1}{\sqrt{2}}\)
\( \theta=\pi-\frac{3 \pi}{4}=\frac{3 \pi}{4} \) [As \( \theta \) lies in II quadrant]
\( \therefore \mathrm{z}=\mathrm{r} \cos \theta+i r \sin \theta=\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4}=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right) \)
This is the required polar form.
ncert solutions class 11 maths complex numbers miscellaneous || class 11 maths ch 5 miscellaneous exercise solutions || ncert exemplar class 11 maths || class 11 maths Complex Number and Quadratic Equation || class 11 maths chapter 5 miscellaneous exercise​ || ncert solution for class 11 maths chapter 5
Download the Math Ninja App Now
6. Solve each of the equation:
\(9 x^{2}-12 x+20=0\)
Answer
We have, \( 9 x^{2}-12 x+20=0 \)
This equation can be rewritten as follows:
\(9 x^{2}-12 x+20=0\)
we have to compare this with \( \mathrm{a}x^2+\mathrm{b}x+\mathrm{c}=0 \) where \( \mathrm{a}=9, \mathrm{~b}=-12 \) and \( \mathrm{c}=20 \)
Thus, the discriminant of the above given equation is:
\(D=b^{2}-4 a c\)
\(=(-12)^{2}-4 \times 9 \times 20\)
\(=144-720\)
\(=-576\)
Therefore, the required solutions are
\(\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(12) \pm \sqrt{-576}}{2 \times 9}=\frac{12 \pm \sqrt{576} i}{18} \quad[\sqrt{-1}=i]\)
\(=\frac{12 \pm 24 i}{18}=\frac{6(2 \pm 4 i)}{18}=\frac{2 \pm 4 i}{3}=\frac{2}{3} \pm \frac{4}{3} i\)
7. Solve each of the equation
\(2 x^{2}-4 x+3=0\)
Answer
We have, \( 2 x^{2}-4 x+3=0 \)
This equation can be rewritten as follows:
\(2 x^{2}-4 x+3=0\)
we have to compare this with \( \mathrm{a}x^2+\mathrm{b}x+\mathrm{c}=0 \) where \( \mathrm{a}=2, \mathrm{~b}=-4 \) and \( \mathrm{c}=3 \)
Thus, the discriminant of the above given equation is:
\(D=b^{2}-4 a c\)
\(=(-4)^{2}-4 \times 2 \times 3\)
\(=16-24\)
\(=-8\)
Therefore, the required solutions are
\(\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(-4) \pm \sqrt{8}}{2 \times 2}=\frac{4 \pm 2 \sqrt{2} i}{4} \quad[\sqrt{-1}=i]\)
\(=\frac{2+\sqrt{2} i}{2}=1 \pm \frac{\sqrt{2}}{2} i\)
8. Solve each of the equation
\(27 x^{2}-10 x+1=0\)
Answer
We have, \( 27 x^{2}-10 x+1=0 \)
we have to compare this with \( \mathrm{a}x^{2}+\mathrm{b}x+\mathrm{c}=0 \) where \( \mathrm{a}=27, \mathrm{~b}=-10 \) and \( \mathrm{c}=1 \)
Thus, the discriminant of the above given equation is:
\(D=b^{2}-4 a c\)
\(=(-10)^{2}-4 \times 27 \times 1\)
\(=100-108\)
\(=-8\)
Therefore, the required solutions are
\(\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(-10) \pm \sqrt{-8}}{2 \times 27}=\frac{10 \pm 2 \sqrt{2} i}{54} \quad[\sqrt{-1}=i]\)
\(=\frac{5 \pm \sqrt{2} i}{27}=\frac{5}{27}+\frac{\sqrt{2}}{27} i\)
9. Solve each of the equation in Exercises 6 to 9:
\(21 x^{2}-28 x+10=0\)
Answer
We have, \( 21 x^{2}-28 x+10=0 \)
we have to compare this with \( \mathrm{a}x^2+\mathrm{b}x+\mathrm{c}=0 \), where \( \mathrm{a}=21, \mathrm{~b}=-28 \) and \( \mathrm{c}=10 \)
Thus, the discriminant of the above given equation is:
\(D=b^{2}-4 a c\)
\(=(-28)^{2}-4 \times 21 \times 10\)
\(=784-840\)
\(=-56\)
Therefore, the required solutions are
\(\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(-28) \pm \sqrt{-56}}{2 \times 21}=\frac{28 \pm \sqrt{56} i}{42} \quad[\sqrt{-1}=i]\)
\(=\frac{28 \pm 2 \sqrt{14} i}{42}=\frac{28}{42} \pm \frac{2 \sqrt{14}}{42} i=\frac{2}{3}+\frac{\sqrt{14}}{21} i\)
10. If \( \mathrm{z}_{1}=2-i, \mathrm{z}_{2}=1+i \), find \(\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|\)
Answer
\(z_{1}=2-i, z_{2}-1+i\)
\(\therefore\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|=\left|\frac{(2-i)+(1+i)+1}{(2-i)-(1+i)+1}\right|\)
\(\quad=\left|\frac{4}{2-2 i}\right|=\left|\frac{4}{2(1-i)}\right|\)
\(=\left|\frac{2}{1-i} \times \frac{1+i}{1+i}\right|=\left|\frac{2(1+i)}{\left(1^{2}-1^{2}\right)}\right|\)
\(=\left|\frac{2(1+i)}{1+1}\right| \quad\left[i^{2}=-1\right]\)
\(=\left|\frac{2(1+i)}{2}\right|\)
\(=|1+i|=\sqrt{1^{2}+1^{2}}=\sqrt{2}\)
Thus, the value of \( \left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right| \) is \( \sqrt{2} \)
11. If \( a+i b=\frac{(x+i)^{2}}{2 x^{2}+1} \),prove that \( a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}} \)
Answer
\(\mathrm{a}+i \mathrm{~b}=\frac{(x+i)^{2}}{\left(2 x^{2}+1\right)}\)
\(=\frac{x^{2}+i^{2}+2 x i}{2 x^{2}+1}\)
\(=\frac{x^{2}-1+2 x i}{2 x^{2}+1}\)
\(\quad=\frac{x^{2}-1}{2 x^{2}}+i \frac{2 x}{2 x^{2}}\)
On comparing real and imaginary parts, we obtain
\( \mathrm{a}=\frac{x^{2}-1}{2 x^{2}+1} \text { and } \mathrm{b}=\frac{2 x}{2 x^{2}+1}\)
\(\therefore a^{2}+b^{2}=\left\{\frac{x^{2}-1}{2 x^{2}+1}\right\}^{2}+\left\{\frac{2 x}{2 x^{2}+1}\right\}^{2}\)
\(=\frac{x^{4}+1-2 x^{2}+4 x^{2}}{(2 x+1)^{2}}\)
\(=\frac{x^{2}+1+2 x^{2}}{\left(2 x^{2}+1\right)^{2}}\)
\(=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}\)
\(\therefore a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)}\)
Hence, proved
ncert solutions class 11 maths complex numbers miscellaneous || class 11 maths ch 5 miscellaneous exercise solutions || ncert exemplar class 11 maths || class 11 maths Complex Number and Quadratic Equation || class 11 maths chapter 5 miscellaneous exercise​ || ncert solution for class 11 maths chapter 5
Download the Math Ninja App Now

12.

(i) Let \( \mathrm{z}_{1}=2-i, \mathrm{z}_{2}=-2+i \). Find: \( \operatorname{Re}\left(\frac{z_{1} z_{2}}{z_{2}}\right) \)
Answer
\(z_{1}=2-i, z_{2}=-2+i\)
\( z_{1} z_{2}=(2-i)(-2+i)=-4+2 i+2 i-i^{2}=-4+4 i- (-1)=-3+4 i \)
\(\overline{z_{1}} =2+i\)
\(\therefore \frac{z_{1} z_{2}}{\overline{z_{1}}}= \frac{-3+4 i}{2+i}\)
On multiplying numerator and denominator by (2-i), we obtain
\(\frac{z_{1} z_{2}}{\overline{z_{1}}}=\frac{(-3+4 i)(2-i)}{(2+i)(2-i)}=\frac{-6+3 i+8 i-4 i^{2}}{2^{2}+1^{2}}=\frac{-6+11 i-4(-1)}{2^{2} 1^{2}}\)
\(=\frac{-2+11 i}{5}=\frac{-2}{5}+\frac{11}{5} i\)
On comparing real parts, we obtain
\( \operatorname{Re} \frac{z_{1} z_{2}}{\overline{z_{1}}}=\frac{-2}{5} \)
(ii) Let \( \mathrm{z}_{1}=2-i, \mathrm{z}_{2}=-2+i \). Find: \( \operatorname{lm}\left(\frac{1}{z_{1} z_{2}}\right) \)
Answer
\(z_{1}=2-i, z_{2}=-2+i\)
\( \frac{1}{z_{1} z_{2}}=\frac{1}{(2-i)(2+i)}=\frac{1}{(2)^{2}+(1)^{2}}=\frac{1}{5} \)
On comparing imaginary parts, we obtain
\(\operatorname{lm} \frac{1}{z_{1} z_{2}}=0\)
13. Find the modulus and argument of the complex number \(\frac{1+2 i}{1-3 i}\)
Answer
Let \( z=\frac{1+2 i}{1-3 i} \), then
\(\mathrm{z} =\frac{1+2 i}{1-3 i} \times \frac{1+3 i}{1+3 i}=\frac{1+3 i+2 i+6 i^{2}}{1^{2}+3^{2}}=\frac{1+5 i+6(-1)}{1+9}\)
\(=\frac{-5+5 i}{10}=\frac{-5}{10}+\frac{5 i}{10}=\frac{-1}{2}+\frac{-i}{2}\)
\( =\text { Let } \mathrm{z}=\mathrm{r} \cos \theta+\mathrm{ir} \sin \theta\)
i.e., \( r \cos \theta=\frac{-1}{2} \) and \( r \sin \theta=\frac{1}{2} \)
On squaring and adding, we obtain
\(r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\left(\frac{-1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\)
\(\quad=r^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\quad=\mathrm{r}=\frac{1}{\sqrt{2}} \quad \text { [conventionally , } \mathrm{r} > 0 \text { ] }\)
\(\therefore \frac{1}{\sqrt{2}} \cos \theta=\frac{-1}{2} \text { and } \frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2}\)
\(\quad=\cos \theta=\frac{-1}{\sqrt{2}} \text { and } \sin \theta=\frac{1}{\sqrt{2}}\)
\( \therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4} \quad \) [As \( \theta \) lies in the II quadrant]
Therefore, the modules and argument of the given complex number are \( \frac{1}{\sqrt{2}} \) and \( \frac{3 \pi}{4} \) respectively.
14. Find the real numbers \( x \) and \( y \) if \( (x-i y)(3+5 i) \) is the conjugate of -\(6 - 24 i\)
Answer
Let \( \mathrm{z}=(x-i y)(3+5 i) \)
\(z=3 x+5 x i-3 y i-5 y i^{2}=3 x+5 x i-3 y i+5 y=(3 x+5 y)+ i(5 x-3 y)\)
\( \therefore \bar{z}=(3 x+5 y)-i(5 x-3 y)\)
It is given that, \( \bar{z}=-6-24 i \)
\(\therefore(3 x+5 y)-i(5 x-3 y)=-6-24 i\)
Equating real and imaginary parts, we obtain
\(3 x+5 y=-6 \ldots (1)\)
\(5 x-3 y=24 \ldots (2)\)
Multiplying equation (1) by 3 and (2) by 5 and then adding them, we obtain
\(9 x+15 y=18\)
\(25 x-15 y=120\)
\(34 x=102\)
\(\therefore x=\frac{102}{34}\)
\(x=3\)
Putting the value of \( x \) in equation (1), we obtain
\(3(3)+5 y=-6\)
\(=5 y=-6-9=-15\)
\(=y=3\)
Thus, the value of \( x \) and \( y \) are 3 and -3 respectively.
Hence, \( x=3 \) and \( y=-3 \)
15. Find the modulus of \( \frac{1+i}{1-i}-\frac{1-i}{1+i} \)
Answer
\(\frac{1+i}{1-i}-\frac{1-i}{1+i}=\frac{(1+i)^{2}-(1-i)^{2}}{(1-i)(1+i)}\)
\(=\frac{1+i^{2}+2 i-1-i^{2}+2 i}{i^{2}+1^{2}}\)
\(\therefore \frac{4 i}{2}=2 i\)
\(\therefore\left|\frac{1+i}{1-i}-\frac{1+i}{1-i}\right|=|2 i|=\sqrt{2^{2}}=2\)
16. If \( (x+i y)^{3}=u+i v \), then show that: \( \frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right) \)
Answer
It is given in the question that,
\((x+i y)^{3}=u+i v\)
\(=x^{3}+(i y)^{3}+3 \cdot x \cdot i y(x+i y)=u+i v\)
\(=x^{3}+i^{3} y^{3}+3 x^{2} y i+3 x y^{2} i=u+i v\)
\(=x^{3}-4 y^{3}+3 x^{2} y i-3 x y^{2}=u+i v\)
\(=\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2} y-y^{3}\right)=u+i v\)
\(u=x^{3}-3 x y^{2}, v=3 x^{2} y-y^{3}\)
\(\therefore \frac{u}{x}+\frac{v}{y}=\frac{x^{3}-3 x y^{2}}{x}+\frac{3 x^{2} y-y^{3}}{y}\)
\(= \frac{x\left(x^{2}-3 y^{2}\right)}{x}+\frac{y\left(3 x^{2} y^{2}\right)}{y}\)
\(= x^{2}-3 y^{2}+3 x^{2}-y^{2}\)
\( =4\left(x^{2}-4 y^{2}\right)\)
\(\therefore \frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)\)
Hence, proved
17. If \( \alpha \) and \( \beta \) are different complex numbers with \( |\beta|=1 \), then find \(\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|\)
Answer
Let \( \mathrm{a}=\mathrm{a}+\mathrm{i} \mathrm{b} \) and \( \beta=x+i y \)
It is given that, \( |\beta|=1 \)
\( \therefore \sqrt{x^{2}+y^{2}}=1\)
\(= x^{2}+y^{2}=1\)
\(\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=\left|\frac{(x+i y)-(a+i b)}{1-(a-i b)(x+i y)}\right|\)
\(=\left|\frac{(x-a)+i(y-b)}{1-(a x+a i y-i b x+b y)}\right|\)
\(=\left|\frac{(x-a)+i(y-b)}{(1-a x-b y)+i(b x-a y)}\right|\)
\(=\frac{|(x-a)+i(y-b)|}{|(1-a x-b y)+i(b x-a y)|}\)
\(=\frac{\sqrt{(x-a)^{2}+(y-b)^{2}}}{\sqrt{(1-a x-b y)^{2}+(b x-a y)^{2}}}\)
\(=\frac{\sqrt{x^{2}+a^{2}-2 a x+y^{2}+b^{2}-2 b y}}{\sqrt{1+a^{2} x^{2}+b^{2} y^{2}-2 a x+2 a b x y-2 b y+b^{2} x^{2}+a^{2} y^{2}-2 a b x y}}\)
\(=\frac{\sqrt{\left(x^{2}+y^{2}\right)+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}\left(x^{2}+y^{2}\right)+b^{2}\left(y^{2}+x^{2}\right)-2 a x-2 b y}}\)
\(=\frac{\sqrt{1+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}+b^{2}-2 a x-2 b y}}\)
\(=1\)
\(\therefore\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=1\)
18. Find the number of non-zero integral solutions of the equation \(|1-i|^{x}=2^{x}\)
Answer
\(|1-i|^{x}=2^{x}\)
\(=\left(\sqrt{1^{2}+(-1)^{2}}\right)^{x}=2^{x}\)
\(=(\sqrt{2})^{x}=2^{x}\)
\(=2^{\frac{x}{2}}=2^{x}\)
\(=x=2 x\)
\(=2 x-x=0\)
\(=x=0\)
Thus, 0 is the only integral solutions of the given equation.
Therefore, the number of non - integral solutions of \(Y\), e given equation is 0 .
19. If \( (\mathrm{a}+i \mathrm{~b})(\mathrm{c}+\mathrm{id})(\mathrm{e}+\mathrm{if})(\mathrm{g}+i \mathrm{~h})=\mathrm{A}+i \mathrm{~B} \), then show that: \(\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)\left(\mathrm{e}^{2}+\mathrm{f}^{2}\right)\left(\mathrm{g}^{2}+\mathrm{h}^{2}\right)=\mathrm{A}^{2}+\mathrm{B}^{2}\)
Answer
\((a+i b)(c+i d)(e+i f)(g+i h)=A+i B\)
\(\therefore|(a+i b)(c+i d)(e+i f)(g+i h)|=|A+i B|\)
\(=\sqrt{a^{2}+b^{2}} \times \sqrt{c^{2}+d^{2}} \times \sqrt{e^{2}+f^{2}} \times \sqrt{g^{2}+h^{2}}=\sqrt{A^{2}+B^{2}}\)
On squaring both sides, we obtain
\(\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}\)
Hence, proved.
20. \( \left(\frac{1+i}{1-i}\right)^{n} =1 \), then find the least positive integral value of \( m \).
Answer
\(\left(\frac{1+i}{1-i}\right)^{n}=1\)
\(=\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{n}=1\)
\(=\left(\frac{(1+i)^{2}}{1^{2}+i^{2}}\right)^{n}=1\)
\(=\left(\frac{1^{2}+i^{2}+2 i}{2}\right)^{n}=1\)
\(=\left(\frac{1-1+2 i}{2}\right)^{n}=1\)
\(=\left(\frac{2 i}{2}\right)^{n}=1\)
\(=i^{n}=1\)
\( \mathrm{m}=4 \mathrm{k} \), where k is some integer.
Therefore, the least positive integer is 1
Thus, the least positive integral value of \( m \) is \( 4(=4 \times 1) \).
ncert solutions class 11 maths complex numbers miscellaneous || class 11 maths ch 5 miscellaneous exercise solutions || ncert exemplar class 11 maths || class 11 maths Complex Number and Quadratic Equation || class 11 maths chapter 5 miscellaneous exercise​ || ncert solution for class 11 maths chapter 5
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top