NCERT Math Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions (English Medium) || CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3
Explore the NCERT Solutions for Class 10 Maths Chapter 5: Arithmetic Progressions (English Medium), with detailed explanations for Exercise 5.3. This resource is designed to simplify complex Arithmetic Progressions, helping Class 10 Maths students grasp the subject effortlessly. For any queries regarding NCERT Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3, feel free to leave a comment, and we’ll respond as soon as possible. Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3. NCERT Solutions for Class 10 Maths Chapter 5: Arithmetic Progressions (English Medium)
NCERT Math Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions (English Medium) || CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3
Exercise 5.3
NCERT Math Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions (English Medium) || CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3
Download the Math Ninja App Now1. Find the sum of the following APs:
Sum of n terms can be given as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(S_{10}=\frac{10}{2}[2 \times 2+(10-1) 5]\)
\(=5(4+45)\)
\(=5 \times 49\)
\(=245\)
thus, sum of the 10 terms of given \( \operatorname{AP}\left(\mathrm{S}_{\mathrm{n}}\right)=245 \)
Sum of n terms can be given as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(S_{12}=\frac{12}{2}[2 \times(-37)+(11) 4]\)
\(=6(-74+44)\)
\(=6 \times(-30)\)
\(=-180\)
Thus, sum of the 12 terms of given \( A P\left(\mathrm{S}_{\mathrm{n}}\right)=-180 \)
Sum of n terms can be given as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(S_{100}=\frac{100}{2}[2 \times(0.6)+(99) .1]\)
\(50(1.2+108.9)\)
\(=50 \times(110.1)\)
\(=5505\)
Thus, sum of the 100 terms of given AP \( (\mathrm{S} 100)=5505 \)
\(a=\frac{1}{15}, n=11\)
\(d=\frac{1}{12}-\frac{1}{5}=\frac{1}{60}\)
Sum of n terms can be given as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(S_{11}=\frac{11}{2}\left[2 \times\left(\frac{1}{15}\right)+(10) \frac{1}{60}\right]\)
\(=\frac{11}{2}\left(\frac{2}{15}+\frac{1}{6}\right)\)
\(=\frac{11}{2} \times\left(\frac{4+5}{30}\right)\)
\(=\frac{33}{20}\)
Thus, sum of the 100 terms of given AP \( \left(\mathrm{S}_{\mathrm{n}}\right)=\frac{33}{20} \)
2. Find the sums given below:
Number of terms can be calculated as follows;
\( \mathrm{an}=a+(\mathrm{n}-1) \mathrm{d} \)
Or, \( 84=7+(\mathrm{n}-1) 3.5 \)
Or, \( (\mathrm{n}-1) 3.5=84-7 \)
Or, \( \mathrm{n}-1=\frac{77 }{ 3.5}=22 \)
Or, \( \mathrm{n}=23 \)
Sum of n terms can be given as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(S_{23}=\frac{23}{2}[2 \times(7)+(22) .5]\)
\(=\frac{23}{2}(14+77)\)
\(=\frac{23}{2} \times(91)\)
\(=1046 \frac{1}{2}\)
NCERT Math Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions (English Medium) || CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3
Download the Math Ninja App NowNumber of terms can be calculated as follows:
\( \mathrm{an}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \)
Or, \( 10=34+(n-1)(-2) \)
Or, \( 10=34-(\mathrm{n}-1)(2) \)
Or, \( (\mathrm{n}-1) 2=34-10=24 \)
Or, \( \mathrm{n}-1=12 \)
Or, \( \mathrm{n}=13 \)
Sum of n terms can be given as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(S_{13}=\frac{13}{2}[2 \times(34)+(12)(-2)]\)
\(=\frac{13}{2}[68+(-24)]\)
\(=\frac{13}{2} \times(44)\)
\(=286\)
Thus, sum of the given \( \mathrm{AP}(\mathrm{Sn})= 286\)
Number of terms can be calculated as follows:
\(\text {an }=a+(n-1) d\)
\(\text {Or, }-230=-5+(n-1)(-3)\)
\(\text {Or, }-230=-5-(n-1) 3\)
Or, \( (\mathrm{n}-1) 3=-5+230=225 \)
Or, \( \mathrm{n}-1=75 \)
Or, \( \mathrm{n}=76 \)
Sum of n terms can be given as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(S_{23}=\frac{76}{2}[2 \times(-5)+(-3) 75]\)
\(=\frac{76}{2}(-10-225)\)
\(38 \times(-235)\)
\(=-8930 .\)
3. In an AP :
Given: \( a_{n}=50 \)
\( a=5 d=3 \)
We know, nth term of an AP is given by
\( a_{n}=a+(n-1) d \)
where \( a \) and \( d \) are first term and common difference respectively and \( n \) are the number of terms of the A.P
Number of terms can be calculated as follows:
\( a_{n}=a+(n-1) d \)
Or, \( 50=5+(\mathrm{n}-1) 3 \)
Or, \( (n-1) 3=50-5=45 \)
Or, \( \mathrm{n}-1=15 \)
Or, \( \mathrm{n}=16 \)
Sum of N terms can be given as follows:
\( S=\frac{N}{2}[2 a+(n-1) d] \)
\( \mathrm{S}_{16}=\frac{16}{2}[2\times(5)+(1 5) 3]\)
\(=8(10+45)\)
\(=8 \times 55\)
\(=440\)
\( \mathrm{S}_{\mathrm{n}}=440 \)
Given:
\( \mathrm{a}=7 \)
\( a_{13}=35 \)
We know, nth term of an AP is
\( a_{n}=a+(n-1) d \)
where a and d are first term and common difference respectively.
So, Common difference can be calculated as follows:
\( a_{n}=a+(n-1) d \)
Or, \( 35=7+12 d \)
Or, \( 12 \mathrm{d}=35-7=28 \)
Or, \( \mathrm{d}=\frac{7 }{ 3} \)
Sum of n terms can be given as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(S_{16}=\frac{13}{2}\left[2 \times(7)+(12) \frac{7}{3}\right]\)
\(=\frac{13}{2}(14+28)\)
\(=\frac{13}{2} \times(42)\)
\(=273\)
\(S_{13}=273\)
Given:
\(\mathrm{d}=3\)
\(\mathrm{a}_{12}=37\)
We know, nth term of an AP is
\( a n=a+(n-1) d \)
where a and d are first term and common difference respectively.
Therefore, First term can be calculated as follows:
\( \mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d} \)
Or, \( 37=\mathrm{a}+11 \times 3 \)
Or, \( \mathrm{a}=37-33=4 \)
\( a=4 \)
Sum of n terms can be given as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(S_{12}=\frac{13}{2}[2 \times(4)+(11) 3]\)
\(=6(8+33)\)
\(=6 \times 41\)
\(\mathrm{~S}_{12}=246\)
NCERT Math Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions (English Medium) || CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3
Download the Math Ninja App NowGiven: \( a_{3}=15 \)
\( \mathrm{S}_{10}=125 \)
Sum of n terms can be given as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(S_{10}=\frac{10}{2}[2 \times(a)+(9) d]\)
\(125=5(2 \mathrm{a}+9 \mathrm{d})\)
\(25=2 \mathrm{a}+9 \mathrm{d}\quad \ldots\ldots\text{(i)}\)
We know, nth term of an AP is
\( a_{n}=a+(n-1) d \)
where a and d are first term and common difference respectively.
According to the question; the 3rd term is 15, which means;
\( a+2 d=15 \quad \ldots\ldots\text{(ii)}\)
Now,
Subtracting equation 2 times eq(ii) from equation eq(i), we get;
\( (2 a+9 d)-2(a+2 d)=25-30 \)
Or, \( 2 a+9 d-2 a-4 d=-5 \)
Or, \( 5 \mathrm{d}=-5 \mathrm{d}=-1 \)
Now,
Substituting the value of \( d \) in equation (2), we get;
\( a+2(-1)=15 \)
Or, \( a-2=15 \)
Or, \( \mathrm{a}=17 \)
\( 10^{\text {th}} \) term can be calculated as follows;
\(\mathrm{a}_{10}=\mathrm{a}+9 \mathrm{d}\)
\(=17-9=8\)
\(a_{10}=8\)
Given:
\(d=5\)
\(S_{9}=75\)
Sum of n terms can be given as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(75=\frac{9}{2}[2 \times(a)+(8) 5]\)
\(75=\frac{9}{2}(2 a+40)\)
\(\frac{50}{3}=2 a \times 40\)
\(a=-\frac{35}{3}\)
Now,
We know, nth term of an AP is
\( a_{n}=a+(n-1) d \)
where a and d are first term and common difference respectively.
\( 9^{\text {th}} \) term can be calculated as follows:
\(a_{9}=a+8 d\)
\(=-\frac{35}{3}+40\)
\( =\frac{85}{3} \)
Given:
\(\mathrm{a}=2\)
\(\mathrm{d}=8\)
\(\mathrm{Sn}=90\)
Sum of n terms can be given as follows
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(90=\frac{N}{2}[2 \times(2)+(N-1) 8]\)
\(90=\frac{N}{2}(4+8 N-8)\)
\(90=N(2+4 N-4)\)
\(4 N^{2}-2 N-90=0\)
\(2 N^{2}-N-45=0\)
For solving this quadratic equation, we have to factor 1 in such a way that product comes out to be 90 and the difference should be 1 \( (2 \mathrm{N}+9)(\mathrm{N}-5) \)
Hence, \( n=-\frac{9 }{ 2} \) and \( n=5 \)
Rejecting the negative value,
We have \( \mathrm{n}=5\)
We know, nth term of an AP is
\( a_{n}=a+(n-1) d \)
where a and \( d \) are first term and common difference respectively.
Now, \( 5^{\text {th}} \) term will be:
\(a_{5}=a+(5-1) d\)
\(a_{5}=a+4 d\)
\(=2+4 \times 8\)
\(=2+32=34\)
\(\mathrm{a}_{5}=34\)
Given:
\(a=8\)
\(a_{n}=62\)
\(S_{n}=210\)
Sum of n terms can be given as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(210=\frac{N}{2}[a+a+(n-1) 8]\)
Since, \( a_{n}=a+(n-1) d \), we have
\(420=n(8+62)\)
\(420=\mathrm{n} \times 70\)
\(\mathrm{n}=6\)
Now, for calculating d:
we know that \( a_{n}=a+(n-1) d \)
\( a_{6}=a+5 d \)
Or, \( 62=8+5 \mathrm{d} \)
Or, \( 5 \mathrm{d}=62-8=54 \)
Or, \( \mathrm{d}=\frac{54 }{ 5} \)
Common difference, \( d=\frac{54 }{ 5} \)
Given: \( a_{n}=4 \)
\( d=2 S_{n}=-14 \)
Sum of n terms can be given as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(-14=\frac{n}{2}[a+a+(n-1) d]\)
\(-28=n(a+4)\)
\(n=\frac{-28}{a+4} \quad \ldots\ldots\text{(i)}\)
We know;
We know, nth term of an AP is
\( a_{n}=a+(n-1) d \)
where a and d are the first term and common difference respectively.
therefore,
\( 4=a+(n-1) 2 \)
Or, \( 4=\mathrm{a}+2 \mathrm{n}-2 \)
Or, \( a+2 n=6 \)
Or, \( 2 \mathrm{n}=6-\mathrm{a} \)
Or, \( \mathrm{n}=\frac{(6-\mathrm{a}) }{ 2}\quad \ldots\ldots\text{(ii)} \)
Using (i) and (ii):
\( \frac{-28}{a+4}=\frac{6-a}{2} \)
Cross multiplying, we get
\( -56=(6-a)(a+4) \)
\(24+2 a-a^{2}=-56\)
\(a^{2}-2 a-80=0\)
Factorizing 2 in such a way that product of the two terms is 80 and their difference is 2
\( (a+8)(a-10)=0 \)
Therefore, \( \mathrm{a}=-8 \) and \( \mathrm{a}=10 \)
As a is smaller than 10 and d has positive value, hence we'll take \( \mathrm{a}=- 8\)
Now, we can find the number of terms as follows:
\(\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}\)
\(4=-8+(\mathrm{n}-1) 2\)
\((\mathrm{n}-1) 2=4+8=12\)
\(\mathrm{n}-1=6, \mathrm{n}=7\)
Hence, \( \mathrm{n}=7 \) and \( \mathrm{a}=-8 \)
Given: \( \mathrm{a}=3 \)
\( \mathrm{n}=8 \mathrm{S}_{\mathrm{n}}=192 \)
Sum of n terms can be given as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(192=\frac{8}{2}[2 \times 3+7 d]\)
\(192=4(6+7 \mathrm{d})\)
\(7 \mathrm{d}=42\)
\(\mathrm{d}=6\)
Given: \( 1=28, \mathrm{S}=144 \)
Sum of n terms can be given as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(144=\frac{9}{2}\left[a+a_{n}\right]\)
\(288=\mathrm{n}(\mathrm{a}+28)\)
\(9 \mathrm{a}+252=288\)
\(9 \mathrm{a}=288-252\)
\(9 \mathrm{a}=36\)
\(\mathrm{a}=4\)
Let no of terms be N.
Now
We know:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(636=\frac{N}{2}[2 \times(9)+(N-1) 8]\)
\(\Rightarrow 636=\frac{N}{2}(18+8 N-8)\)
\(\Rightarrow 636=\mathrm{N}(9+4 \mathrm{N}-4)\)
\(\Rightarrow 636=9 \mathrm{N}+4 \mathrm{N}^{2}-4 \mathrm{N}\)
\(\Rightarrow 4 \mathrm{N}^{2}+5 \mathrm{N}-636=0\)
Now to factorize the above quadratic equation, we need to make the product \(( 636.4=2544 ) \) and difference should be \( 5\)
\( \Rightarrow 4 \mathrm{N}^{2}+53 \mathrm{N}- 48 \mathrm{N}-636=0 \) \(\Rightarrow \mathrm{N}(4 \mathrm{N}+53)-12(4 \mathrm{N}+53)=0\)
\(\Rightarrow(\mathrm{N}-12)(4 \mathrm{N}+53)=0\)
Now, \( \mathrm{N}=-\frac{53 }{ 4} \) and \( \mathrm{N}=12 \)
Taking the integral value and rejecting the fractional value, we have \( \mathrm{n}=12 \).
\( S_{n}=\frac{n}{2}\left(a+a_{n}\right) \)
where 'a' is first term of \( \mathrm{AP}, \mathrm{n} \) is the number of terms of AP and 'an' is last term of AP.
Given, First term, a \( =5 \) and last term, an \( =45 \)
Also, sum \( =400 \) Putting the values in the formula, we get \( 400=\frac{n}{2} \) \(( 5+ 45)\)
\( \Rightarrow 800=50 \mathrm{n} n=\frac{800}{50} \)
\( \Rightarrow \mathrm{n}=16 \).
i.e. there are 16 terms in given AP.
Now the nth term of an \( A P \) is given by the formula,
\( a_{n}=a+(n-1) d \)
where, \( a \) is the first term, \( n \) is the number of terms, \( a_{n} \) is the \( n \)th term and \( d \) is the common difference.
\(45=5+(16-1) \times d \Rightarrow 15 d=40\)
\(\Rightarrow d=\frac{40 }{ 15}\)
Therefore, common difference of AP is \( \frac{8 }{ 3} \).
First term, \( \mathrm{a}=17 \), Last term, \( \mathrm{an}=350 \) and
Common difference, \( d=9 \)
We know, nth term formula:
\(\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}\)
\(350=17+(\mathrm{n}-1) 9\)
\((\mathrm{n}-1) 9=350-17\)
\(\mathrm{n}-1=\frac{333 }{ 9}=37\)
\(\mathrm{n}=38\)
and we know, sum of '\( n \)' terms of an AP if first and last term is given is
\( S_{n}=\frac{n}{2}\left(a+a_{n}\right)\)
\(=\frac{38}{2}[17+350]\)
\(=19 \times 367\)
\(=6973\)
where n is number of terms and
d is common difference.
We know;
\( a_{n}=a+(n-1) d \)
\( \Rightarrow 149=\mathrm{a}+(22-1) 7 \)
\(\Rightarrow 149=\mathrm{a}+147\)
\( \Rightarrow \mathrm{a}=149-147\)
\( \Rightarrow \mathrm{a}=2 \)
The sum can be calculated as follows:
\( S=\frac{N}{2}[2 a+(n-1) d]\)
\(=\frac{22}{2}[2+149]\)
\(=11 \times 151\)
\(=1661\)
Given: \( \mathrm{a}_{2}=14, \mathrm{a}_{3}=18 \) and \(n=51\)
We have; \( \mathrm{a}_{2}=14, \mathrm{a}_{3}=18 \) and \( \mathrm{n}=51 \)
We know,
\( d=a_{3}-a_{2}=18-14=4 \)
Therefore, \( \mathrm{d}=4 \)
\( a_{2}-a=4\)
\(14-a=4\)
\(a=10\)
So, first term \( =10 \)
Now, sum can be calculated as follows:
\( S=\frac{N}{2}[2 a+(n-1) d] \)
Where, a and d are first term and common difference respectively.
\(=\frac{51}{2}[2 \times 10+50 \times 4]\)
\(=51 \times\frac{(20+200) }{ 2}\)
\(=51 \times 110\)
\( =5610 \)
\( S_{51}=5610 \)
NCERT Math Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions (English Medium) || CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3
Download the Math Ninja App NowSum of \( n \) terms of an A.P is given by the formula,
\( S_{n}=\frac{n}{2}[2 a+(n-1) d] \)
where, \( \mathrm{S}= \) Sum, \( \mathrm{n}= \) number of terms, \( \mathrm{a}= \) first term and \( \mathrm{d}= \) common difference.
\( S_{7}=49 \)
Therefore, \( 49=\frac{7}{2}(2 a+(7-1) d) \)
\(\Rightarrow 49=7(\mathrm{a}+3 \mathrm{d})\)
\(\Rightarrow 7=\mathrm{a}+3 \mathrm{d}\)
\(\Rightarrow \mathrm{a}+3 \mathrm{d}=7\quad \ldots\ldots\text{[i]}\)
Similarly,
\(S_{17}=\frac{17}{2}[a+(17-1) d]\)
\(289=17(\mathrm{a}+8 \mathrm{d})\)
\(17=\mathrm{a}+8 \mathrm{d}\)
\(\mathrm{a}+8 \mathrm{d}=17\quad \ldots\ldots\text{[ii]}\)
Subtracting [1] from [2] we get;
\(a+8 d-a-3 d=17-7\)
\(\Rightarrow 5 d=10\)
\(\Rightarrow d=2\)
Using the value of \( d \) in the equation [1], we can find 'a' as follows:
\( a+3 d=7 \)
\(\Rightarrow a+6=7\)
\(\Rightarrow a=1\)
Using the values of a and d; we can find the sum of first n terms as follows:
\(S_{n}=\frac{n}{2}[2(1)+(n-1) 2]\)
\(S_{n}=\frac{n}{2}[2+2 n-2]\)
\(\Rightarrow S=n^{2}\)
10.
\( a_{n}=3+4 n \)
Also find the sum of the first 15 terms.
\(\mathrm{a}=3+4=7\)
\(\mathrm{a}_{2}=3+4 \times 2=11\)
\(\mathrm{a}_{3}=3+4 \times 3=15\)
\(\mathrm{a}_{4}=3+4 \times 4=19\)
Here; each subsequent member of the series is increasing by 4 and hence it is an AP.
The sum of "n" terms is given as:
\( \text {Sum}=\frac{n}{2}[2 a+(n-1) d] \)
where, \( \mathrm{n}= \) no. of terms
\( \mathrm{a}= \) first term
\( \mathrm{d}= \) common difference
\( \therefore \) The sum of first 15 terms is given as:
\(=(\frac{15 }{ 2})[2 \times 7+(15-1) \times 4]\)
\(=(\frac{15 }{ 2})[14+(14) \times 4]\)
\(=(\frac{15 }{ 2})[70]\)
\(=525\)
\( a_{n}=9-5 n \)
Also find the sum of the first 15 terms.
\(\mathrm{a}=9-5=4\)
\(\mathrm{a}_{2}=9-5 \times 2=-1\)
\(\mathrm{a}_{3}=9-5 \times 3=-6\)
\(\mathrm{a}_{4}=9-5 \times 4=-11\)
Here; each subsequent member of the series is decreasing by 5 and hence it is an AP.
\( \therefore \) The sum of first 15 terms is given as:
\(=(\frac{15 }{ 2})[2 \times 4+(15-1) \times-5]\)
\(=(\frac{15 }{ 2})[8+(14) \times-5]\)
\(=(\frac{15 }{ 2})[8-70]\)
\(=15(-31)\)
\(=-465\)
NCERT Math Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions (English Medium) || CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3
Download the Math Ninja App NowWhat is the sum of first two terms? What is the second term? Similarly, find the 3rd, the 10th and the nth terms.
\( \mathrm{S}_{1}=\mathrm{a}_{1} \)
We can find the first term as follows: \( \mathrm{S}_{\mathrm{n}}=4 \mathrm{n}-\mathrm{n}^{2} \)
So, by putting the values in place of 1 we will get the sum till that term \( \mathrm{S}_{1}=4 \times 1-1^{2}=3 \)
Now; sum of first two terms can be calculated as follows:
\(\mathrm{S}_{2}=4 \times 2-2^{2}\)
\(=8-4=4\)
Hence, \( \mathrm{S}_{2}=4 \)
Now we know by the formula that: \( S_{n}-S_{n-1}=a_{n} \)
Hence; second term \( =4-3=1 \)
And second term \(-\) first term \( = \) common difference of AP
Therefore, common difference, \( d=1-3=-2 \)
Now we have the AP as follows
First term, \( \mathrm{a}=3 \) Common difference \( =-2 \) So AP will look like \( : 3,1, 1,-3,-5 \), \(\ldots\ldots\ldots\) And, nth term of an AP is given by the formula, \( a_{n}=a+(n-1) d \)
Putting the value of a and \( d \) in above formula we get \( \mathrm{a}_{n}=3+(n-1)-2 \)
\(\mathrm{a}_{\mathrm{n}}=3-2 \mathrm{n}+2\)
\(\mathrm{a}_{\mathrm{n}}=5-2 \mathrm{n}\)
So, 3rd term can be can be calculated by just replacing \( n \) with 3
\(\mathrm{a}_{3}=5-2 \times 3\)
\(\mathrm{a}_{3}=-1\)
Similarly \( \mathrm{a}_{10}=5-2 \times 10 \)
\( a_{10}=-15 \)
And so on we can calculate any number of terms of this AP.
So, we have \( \mathrm{a}=6, \mathrm{~d}=6, \mathrm{n}=40 \) and 40th term \( =240 \).
Sum of first 40 positive integers divisible by 6 can be calculated as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(=\frac{40}{2}[2 \times 6+(39) 6]\)
\(=20(12+234)\)
\(=20 \times 246\)
\(=4920\)
\( 8,16,24, \ldots\ldots\ldots\) up to 15 terms
Given: First term, \( \mathrm{a}=8 \), Common Difference, \( \mathrm{d}=8 \) and nth term, \( \mathrm{n}= 15\)
Sum of first 15 multiples of 8 can be calculated as:
Sum of n terms of an A.P is given by:
\( S_{n}=\frac{N}{2}[2 a+(n-1) d] \)
Applying the values from above
\(=\frac{15}{2}[2 \times 8+(14) 8]\)
\(=15(8+56)\)
\(=15 \times 64=960\)
Thus sum of first 15 multiples of 8 is 960.
As we can clearly see this forms an AP with first term, \( a=1 \) and common difference, \( d=2 \) and nth term,
\( \mathrm{a}_{\mathrm{n}}= 49\)
Now, first we need to find number of terms, for that we have the formula of nth terms of an AP given by \( a_{n}=a+(n-1) d \)
Putting the values we get
\( 49=1+(\mathrm{n}-1) 2\)
\(48=(\mathrm{n}-1)\)
\( 2(\mathrm{n}-1)=24\)
\( \mathrm{n}= 25\)
So there are 25 odd numbers between 0 and 50 And sum of these 25 numbers are given by using sum of
\( S_{n}=\frac{n}{2}[2 a+(n-1) d] \)
Putting the values of formula we get,
\( S_{25}=\frac{25}{2}[2 \times 1+(25-1) \times 2] \)
Terms of an AP
\( S_{25}=\frac{25}{2}[2 \times 1+(25-1) \times 2] \)
Terms of an AP
\(S_{25}=\frac{25}{2} \times[48+2]\)
\(S_{25}=25 \times 25\)
\(S_{25}=625\)
So, the sum of odd numbers between 0 and 50 is 625
We can find the penalty by using the sum of 30 terms:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(=\frac{30}{2}[2 \times 200+(29) 50]\)
\(=15(400+1450)\)
\(=15\times 1850\)
\(=27750\)
Hence, he has to pay an amount of Rs. 27750 as penalty
NCERT Math Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions (English Medium) || CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3
Download the Math Ninja App NowLet the lowest price given be '\( a \)' and then prize is increased by Rs 20. In that case, we have First term \( = \) a Common difference, \( d=-20 \) No of terms, \( n= \) No of students getting prize \( =7 \) Sum of '\( n \)' terms \( = \) Total prize money \( =700 \)
Now,
we know, sum of '\( n \)' terms on AP is
\( S=\frac{n}{2}[2 a+(n-1) d] \)
\( 700=\frac{7}{2}[2 \times a+6 \times(-20)] \)
\( \Rightarrow 700 \times 2=7[2 \mathrm{a}-120] \)
\(\Rightarrow 200=2 \mathrm{a}-120\)
\( \Rightarrow 2 \mathrm{a}=200+120 \)
\(\Rightarrow 2 \mathrm{a}= 320\)
\(\Rightarrow \mathrm{a}=160 \)
Hence, the divisions are Rs. 160, Rs. 140, Rs. 120, Rs. 100, Rs. 80, Rs. 60, Rs. 40.
Since each section of class 1 will plant 1 tree, so 3 trees will be planted by 3 sections of class 1. Thus every class will plant 3 times the number of their class
(for example class (iii) will plant \( =3 \times 3=9 \) plants)
Similarly,
No. of trees planted by 3 sections of class \( 1=3 \)
No. of trees planted by 3 sections of class \( 2=6 \)
No. of trees planted by 3 sections of class \( 3=9 \)
No. of trees planted by 3 sections of class \( 4=12 \)
Its clearly an AP with first term \( = \) Number of trees planted by class \( 1= 3\)
We have; \( \mathrm{a}=3, \mathrm{~d}=3 \) and \( \mathrm{n}=12 \)
We can find the total number of trees as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(=\frac{12}{2}[2 \times 3+(11) 3]\)
\(=6(6+33)\)
\(=6 \times 39\)
\( =234 \)
Total number of trees planted by students \( =234 \).
Circumference of 2nd semicircle \( =\pi \mathrm{r}=1 \pi=\pi \)
Circumference of 3rd semicircle \( =\pi \mathrm{r}=1.5 \pi \)
It is clear that \( \mathrm{a}=0.5 \pi, \mathrm{d}=0.5 \pi \) and \( \mathrm{n}=13 \)
Hence; the length of the spiral can be calculated as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(=\frac{13}{2}[2 \times 0.5 \pi+(12) \cdot 5 \pi]\)
\(=\frac{13}{2}[\pi+6 \pi]\)
\(=\frac{13}{2}(7 \pi)\)
\(=\frac{13}{2} \times 7 \times \frac{22}{7}\)
\(=143 \mathrm{~cm}.\)
We have; First term, \( a=20 \), Common difference, \( d=-1 \) and Sum of \( n \) terms, \( \mathrm{S}_{\mathrm{n}}= \) No of logs \( =200 \)
We know;
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(200=\frac{N}{2}[2 \times 20+(N-1)(-1)]\)
\(400=\mathrm{N}(40-\mathrm{N}+1)\)
\(400=41 \mathrm{N}-\mathrm{N} 2\)
\(\mathrm{N}^{2}-41 \mathrm{N}+400=0\)
\( (\mathrm{N}-16)(\mathrm{N}-25) \)
Thus, \( \mathrm{n}=16 \) and \( \mathrm{n}=25 \)
If number of rows is 25 then;
\(a_{25}=20+24 \times(-1)\)
\(=20-24=-4\)
Since; negative value for number of logs is not possible hence; number of rows \( =16 \)
\(a_{16}=20+15 \times(-1)\)
\(=20-15=5\)
Thus, number of rows \( =16 \) and number of logs in top rows \( =5 \)
A competitor starts from the bucket, picks up the nearest potato, runs back with it, deposit in the bucket, runs back to pick up the next potato, runs to the bucket to drop it in, and she continues in the same way until all the potatoes are in the bucket. What is the total distance the competitor has to run?
Distance covered in picking and dropping 2nd potato \( =2(5+3)=16 \mathrm{~m} \) Distance covered in picking and dropping 3rd potato \( =2(5+3+3)= 22\) m
Therefore, \( \mathrm{a}=10, \mathrm{~d}=6 \) and \( \mathrm{n}=10 \)
Total distance can be calculated as follows:
\(S=\frac{N}{2}[2 a+(n-1) d]\)
\(=\frac{10}{2}[2 \times 10+(9) 6]\)
\(=5(20+54)\)
\(=5 \times 74\)
\(=370 \mathrm{~m}\)
Total distance run by the competitor \( =370 \mathrm{~m} \).
NCERT Math Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions (English Medium) || CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3
Download the Math Ninja App NowClass 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.1
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.2
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.3
Class 10 : CBSE Class 10 Maths Chapter 2 Polynomials Ex 2.1 || NCERT Solutions for Class 10 Maths Chapter 2: Polynomials (English Medium)
Class 10 : CBSE Class 10 Maths Chapter 10 Circles solutions Ex 10.2
Class 10 : CBSE Class 10 Maths Chapter 13 Surface Areas and Volumes solutions Ex 13.2
Class 10 : CBSE Class 10 Maths Chapter 13 Surface Areas and Volumes solutions Ex 13.3