Class 11 maths exercise 3.3 solutions | exercise 3.3 class 11 maths solutions | class 11 ch 3 exercise 3.3 solutions | class 11 chapter 3 exercise 3.3 solution | class 11 maths ncert solutions chapter 3 | ncert solutions for class 11 maths chapter 3 | ncert exemplar class 11 maths | trigonometric functions class 11
Looking for NCERT Class 11 Maths Exercise 3.3 solutions? You’re in the right place! This section provides complete and easy-to-understand solutions for all questions from Exercise 3.3 of Chapter 3 – Trigonometric Functions. This part of the chapter focuses on the signs of trigonometric functions in different quadrants and their periodic properties. Our Class 11 Maths NCERT solutions are crafted to help you master these concepts step by step, making your learning smooth and exam-ready. Whether you’re revising or practicing for accuracy, these solutions will guide you through with clarity. Download or view the full solutions now and strengthen your trigonometry basics!

ncert exemplar class 11 maths || class 11 maths exercise 3.3 solutions || class 11 ch 3 exercise 3.3 solutions || class 11 maths ncert solutions chapter 3 || ncert solutions for class 11 maths chapter 3 || exercise 3.3 class 11 maths solutions || trigonometric functions class 11 || class 11 chapter 3 exercise 3.3 solution
Exercise 3.3
1. Prove that:
\(\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}=-\frac{1}{2}\)
\(\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4}=-\frac{1}{2}\)
Answer
L. H. S. \( =\sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{3}-\tan ^{2} \frac{\pi}{4} \)
\(=\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}-(1)^{2}\)
\(=\frac{1}{4}+\frac{1}{4}-1=-\frac{1}{2}\)
\(=\text { R.H.S }\)
Hence, Proved.
2. Prove that
\(2 \sin ^{2} \frac{\pi}{6}+\operatorname{cosec}^{2} \frac{7 \pi}{6} \cos ^{2} \frac{\pi}{3}=\frac{3}{2}\)
\(2 \sin ^{2} \frac{\pi}{6}+\operatorname{cosec}^{2} \frac{7 \pi}{6} \cos ^{2} \frac{\pi}{3}=\frac{3}{2}\)
Answer
L. H. S. \( =2 \sin ^{2} \frac{\pi}{6}+\operatorname{cosec}^{2} \frac{7 \pi}{6} \cos ^{2} \frac{\pi}{3} \)
\(=2\left(\frac{1}{2}\right)^{2}+\operatorname{cosec}^{2}\left\{\pi+\frac{\pi}{6}\right\}\left(\frac{1}{2}\right)^{2}\)
\(=2 \times \frac{1}{4}+\left\{-\operatorname{cosec} \frac{\pi}{6}\right\}^{2}\left(\frac{1}{4}\right)\)
\(=\frac{1}{2}+(-2)^{2}\left(\frac{1}{4}\right)\)
\(=\frac{1}{2}+\frac{4}{4}=\frac{1}{2}+1=\frac{3}{2}\)
\(=\text { RHS }\)
Hence, Proved
ncert exemplar class 11 maths || class 11 maths exercise 3.3 solutions || class 11 ch 3 exercise 3.3 solutions || class 11 maths ncert solutions chapter 3 || ncert solutions for class 11 maths chapter 3 || exercise 3.3 class 11 maths solutions || trigonometric functions class 11 || class 11 chapter 3 exercise 3.3 solution
3. Prove that
\(\cot ^{2} \frac{\pi}{6}+\operatorname{cosec}^{2} \frac{5 \pi}{6}+3 \tan ^{2} \frac{\pi}{6}=6\)
\(\cot ^{2} \frac{\pi}{6}+\operatorname{cosec}^{2} \frac{5 \pi}{6}+3 \tan ^{2} \frac{\pi}{6}=6\)
Answer
L. H. S. \( =\cot ^{2} \frac{\pi}{6}+\operatorname{cosec}^{2} \frac{5 \pi}{6}+3 \tan ^{2} \frac{\pi}{6} \)
\(=(\sqrt{3})^{2}+\operatorname{cosec}\left\{\pi-\frac{\pi}{6}\right\}+3\left(\frac{1}{\sqrt{3}}\right)^{2}\)
\(=3+\operatorname{cosec} {\frac{\pi}{6}}+3 \times \frac{1}{3}\)
\(=3+2+1=6\)
\(=\text { RHS }\)
Hence, proved.
4. Prove that
\(2 \sin ^{2} \frac{3 \pi}{4}+2 \cos ^{2} \frac{\pi}{4}+2 \sec ^{2} \frac{\pi}{3}=10\)
\(2 \sin ^{2} \frac{3 \pi}{4}+2 \cos ^{2} \frac{\pi}{4}+2 \sec ^{2} \frac{\pi}{3}=10\)
Answer
L. H. S. \( =2 \sin ^{2} \frac{3 \pi}{4}+2 \cos ^{2} \frac{\pi}{4}+2 \sec ^{2} \frac{\pi}{3} \)
\(=2\left\{\sin \left(\pi-\frac{\pi}{4}\right)\right\}^{2}+2\left(\frac{1}{\sqrt{2}}\right)^{2}+2(2)^{2}\)
\(=2\left\{\sin \frac{\pi}{4}\right\}^{2}+2 \times \frac{1}{2}+8\)
\(=1+1+8\)
\(=10\)
\(=\text { RHS }\)
Hence, Proved.
5. Find the value of
(i) \( \sin 75^{\circ} \)
(ii) \( \tan 15^{\circ} \)
(i) \( \sin 75^{\circ} \)
(ii) \( \tan 15^{\circ} \)
Answer
\(\text { (i) } \sin 75^{\circ}=\sin \left(45^{\circ}+30^{\circ}\right)\)
\(=\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ}\)
\({[\sin (x+y)=\sin x \cos y+\cos x \sin y]}\)
\(=\left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right)+\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right)\)
\(=\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}=\frac{\sqrt{3}+1}{2 \sqrt{2}}\)
(ii) \( \tan 15^{\circ}=\tan \left(45^{\circ}-30^{\circ}\right) \)
\(=\frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \tan 30^{\circ}}\quad {\left[\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}\right]}\)
\(=\frac{1-\frac{1}{\sqrt{3}}}{1+1\left(\frac{1}{\sqrt{3}}\right)}=\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}}\)
\(=\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)(\sqrt{3}-1)}=\frac{3+1-2 \sqrt{3}}{\sqrt{3}^{2}-(1)^{2}}\)
\(=\frac{4-2 \sqrt{3}}{3-1}=2-\sqrt{3}\)
6. Prove that:
\(\cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)=\sin (x+y)\)
\(\cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)=\sin (x+y)\)
Answer
\(=\cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)-\sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)\)
\(=\frac{1}{2}\left[2 \cos \left(\frac{\pi}{4}-x\right) \cos \left(\frac{\pi}{4}-y\right)\right]+\frac{1}{2}\left[-2 \sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}-y\right)\right]\)
\(=\frac{1}{2}\left[\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}+\cos \left\{\left(\frac{\pi}{4}-x\right)-\left(\frac{\pi}{4}-y\right)\right\}\right]+\)
\(\frac{1}{2}\left[\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}-\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}\right]\)
\(\quad[\therefore 2 \cos A \cos B=\cos (A+B)+\cos (A-B)]\)
\(\quad[\therefore-2 \sin A \sin B=\cos (A+B)-\cos (A-B)]\)
\(=2 \times \frac{1}{2}\left[\cos \left\{\left(\frac{\pi}{4}-x\right)+\left(\frac{\pi}{4}-y\right)\right\}\right]\)
\(=\cos \left[\frac{\pi}{2}-(x-y)\right]\)
\(=\sin (x+y)\)
\(=\text { R.H.S. }\)
Hence, proved.
7. Prove \( \frac{\tan \left(\frac{\pi}{4}+x\right)}{\tan \left(\frac{\pi}{4}-x\right)}=\left(\frac{1+\tan x}{1-\tan x}\right)^{2} \)
Answer
It is known that
\( \tan (\mathrm{A}+\mathrm{B})=\frac{\tan A+\tan B}{1-\tan A \tan B} \) and \( \tan (\mathrm{A}-\mathrm{B})=\frac{\tan A-\tan B}{1+\tan A \tan B} \)
L.H.S. \( =\frac{\tan \left(\frac{\pi}{4}+x\right)}{\tan \left(\frac{\pi}{4}-x\right)}=\frac{\left(\frac{\tan \frac{\pi}{4}+\tan x}{1-\tan \frac{\pi}{4} \tan x}\right)}{\left(\frac{\tan \frac{\pi}{4} \tan x}{1+\tan \frac{\pi}{4} \operatorname{tanx}}\right)} \)
\( =\frac{\left(\frac{1+\tan x}{1-\tan x}\right)}{\left(\frac{1-\operatorname{tanx}}{1-\tan x}\right)}=\left(\frac{1+\tan x}{1-\tan x}\right)^{2}\)
\( = \) RHS
Hence, proved.
ncert exemplar class 11 maths || class 11 maths exercise 3.3 solutions || class 11 ch 3 exercise 3.3 solutions || class 11 maths ncert solutions chapter 3 || ncert solutions for class 11 maths chapter 3 || exercise 3.3 class 11 maths solutions || trigonometric functions class 11 || class 11 chapter 3 exercise 3.3 solution
8. Prove \( \frac{\cos (\pi+x) \cos (-x)}{\sin (\pi-x) \cos \left(\frac{\pi}{2}+x\right)}=\cot ^{2} x \)
Answer
L.H.S. \( =\frac{\cos (\pi+x) \cos (-x)}{\sin (\pi-x) \cos \left(\frac{\pi}{2}+x\right)}=\cot ^{2} x \)
\( =\frac{[-\cos x][\cos x]}{(\sin x)(-\sin x)} \)
\( =\frac{-\cos ^{2} x}{-\sin ^{2} x} \)
\( =\cot ^{2} x \)
\( = \) RHS
Hence, Proved.
9. Prove that
\(\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]=1\)
\(\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]=1\)
Answer
L.H.S. \( =\cos \left(\frac{\pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{\pi}{x}-x\right)+\cot (2 \pi+x)\right] \)
\( =\sin x \cos x\left[\cot \left(\frac{\pi}{2}+x\right)+\cot (2 \pi+x)\right] \)
\( [\therefore \) cos is positive in first and fourth quadrant]
\( =\sin x \cos x[\tan x+\cot x][\therefore \cot \) is positive in first and third quadrant \( ] \)
\( =\sin x \cos x\left[\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right] \)
\( =\sin x \cos x\left[\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos x}\right] \)
\( =\sin ^{2} x+\cos ^{2} x=1 \)
\( = \) RHS
Hence, proved.
10. Prove \( \sin (\mathrm{n}+1) x \sin (\mathrm{n}+2) x+\cos (\mathrm{n}+1) x \cos (\mathrm{n}+2) x=\cos \) \( x \)
Answer
\(\begin{array}{l}
\text { L.H.S. }=\sin (\mathrm{n}+1) x \sin (\mathrm{n}+2) x+\cos (\mathrm{n}+1) x \cos (\mathrm{n}+2) x \\
=\cos [(n+2) x-(n+1) x][\cos \mathrm{A} \cos \mathrm{B}+\sin \mathrm{A} \sin \mathrm{B}=\cos (\mathrm{A}-\mathrm{B})] \\
=\cos [n x+2 x-n x-x]=\cos x
\end{array}\)
R.H.S
Hence, proved
11. Prove that: \( \cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)=-\sqrt{2} \sin x \)
Answer
\(\text { L.H.S. }=\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)\)
\(=-2 \sin \left[\frac{\left(\frac{3 \pi}{4}+x\right)+\left(\frac{3 \pi}{4}-x\right)}{2}\right] \sin \left[\frac{\left(\frac{3 \pi}{4}+x\right)-\left(\frac{3 \pi}{4}-x\right)}{2}\right]\)
\(\because \left[\cos \mathrm{A}-\cos \mathrm{B}=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}\right]\)
\(=-2 \sin \left(\frac{3 \pi}{4}\right) \sin x\)
\(=-2 \sin \left(\pi-\frac{\pi}{4}\right) \sin x\)
\(=-2 \sin \left(\frac{\pi}{4}\right) \sin x \quad [\because \sin \text { is positive in second quadrant] }\)
\(=-2 \sin \left(\pi-\frac{\pi}{4}\right) \sin x\)
\(=-2 \sin \left(\frac{\pi}{4}\right) \sin x\quad [\sin \text { is positive in second quadrant] }\)
\(=-2 \times \frac{1}{\sqrt{2}} \times \sin x\)
\(=-\sqrt{2} \sin x\)
\(=\text { RHS }\)
Hence, proved
12. Prove that \( \sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x \)
Answer
\(\text { L.H.S. }=\sin ^{2} 6 x-\sin ^{2} 4 x\)
\(=(\sin 6 x+\sin 4 x)(\sin 6 x-\sin 4 x)\)
\(=\left[2 \sin \left(\frac{6 x+4 x}{2}\right) \cos \left(\frac{6 x-4 x}{2}\right)\right]\left[2 \cos \left(\frac{6 x+4 x}{2}\right) \cdot \sin \left(\frac{6 x-4 x}{2}\right)\right]\)
\(\quad \quad\left[\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right), \sin A-\sin B=\right.\)
\(\left.2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)\right]\)
\(=(2 \sin 5 x \cos x)(2 \cos 5 x \sin x)\)
\(=(2 \sin 5 x \cos 5 x)(2 \sin x \cos x)\)
\(=\sin 10 x \sin 2 x\)
\(=\text { R.H.S. }\)
Hence, proved
13. Prove that \( \cos ^{2} 2 x-\cos ^{2} 6 x=\sin 4 x \sin 8 x \)
Answer
\(\text { L.H.S. }=\cos ^{2} 2 x-\cos ^{2} 6 x\)
\(=(\cos 2 x+\cos 6 x)(\cos 2 x-6 x)\)
\(=\left[2 \cos \left(\frac{2 x+6 x}{2}\right) \cos \left(\frac{2 x-6 x}{2}\right)\right]\left[-2 \sin \left(\frac{2 x+6 x}{2}\right) \sin \left(\frac{2 x-6 x}{2}\right)\right]\)
\(=[2 \cos 4 x \cos (-2 x)][-2 \sin 4 x \sin (-2 x)]\)
\(=(2 \cos 4 x \cos 2 x)[-2 \sin 4 x(-\sin 2 x)]\)
\(=(2 \sin 4 x \cos 4 x)(2 \sin 2 x \cos 2 x)\)
\(=\sin 8 x \sin 4x\)
\(=\text { RHS }\)
Hence, proved.
14. Prove that: \( \sin 2 x+2 \sin 4 x+\sin 6 x=4 \cos 2 x \sin 4 x \)
Answer
To prove: \( \sin 2 x+2 \sin 4 x+\sin 6 x=4 \cos 2 x \sin 4 x \)
\(=\left[2 \sin \left(\frac{2 x+6 x}{2}\right)\left(\frac{2 x-6 x}{2}\right)\right]+2 \sin 4 x\)
\(=\left[\therefore \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A+B}{2}\right)\right]\)
\(=2 \sin 4 x \cos (-2 x)+2 \sin 4 x\)
\(=2 \sin 4 x \cos 2 x+2 \sin 4 x\)
\(=2 \sin 4 x(\cos 2 x+1)\)
\(=2 \sin 4 x(2 \cos 2 x-1+1)\)
\(=2 \sin 4 x(2 \cos 2 x)\)
\(=4 \cos 2 x \sin 4 x\)
\(=\text { R.H.S. }\)
Hence, proved.
15. Prove that \( \cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\sin 3 x) \)
Answer
\(\text { LHS }=\cot 4 x(\sin 5 x+\sin 3 x)\)
\(=\frac{\cot 4 x}{\sin 4 x}\left[2 \sin \left(\frac{5 x+3 x}{2}\right) \cos \left(\frac{5 x-3 x}{2}\right)\right]\)
\(=\left[\therefore \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right]\)
\(=\left(\frac{\cos 4 x}{\sin 4 x}\right)[2 \sin 4 x \cos x]\)
\( \mathrm{LHS}=2 \cos 4 x \cos x \)
\( \mathrm{RHS}=\cot x(\sin 5 x-\sin 3 x) \)
\(=\frac{\cos x}{\sin x}\left[2 \cos \left(\frac{5 x+3 x}{2}\right) \text { sin }\left(\frac{5 x-3 x}{2}\right)\right]\)
\(=\left[\therefore \sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right)\right]\)
\(=\frac{\cos x}{\sin x}[2 \cos 4 x \sin x]\)
\( \mathrm{RHS}=2 \cos 4 x \cos x \)
\( \therefore \mathrm{LHS}=\mathrm{RHS} \)
Hence, proved
ncert exemplar class 11 maths || class 11 maths exercise 3.3 solutions || class 11 ch 3 exercise 3.3 solutions || class 11 maths ncert solutions chapter 3 || ncert solutions for class 11 maths chapter 3 || exercise 3.3 class 11 maths solutions || trigonometric functions class 11 || class 11 chapter 3 exercise 3.3 solution
16. Prove that \( : \frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}=-\frac{\sin 2 x}{\cos 10 x} \)
Answer
It is known that
\(=\cos \mathrm{A}-\cos \mathrm{B}=-2 \sin \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right), \sin \mathrm{A}-\sin \mathrm{B}=2 \cos \left(\frac{A+B}{2}\right)\)
\(\sin \left(\frac{A-B}{2}\right)\)
L.H.S. \( =\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x} \)
\( =\frac{-2 \sin \left(\frac{9 x+5 x}{2}\right) \cdot \sin \left(\frac{9 x-5 x}{2}\right)}{2 \cos \left(\frac{17 x+3 x}{2}\right) \cdot \sin \left(\frac{17 x-3 x}{2}\right)} \)
\( =\frac{-2 \sin 7 x \cdot \sin 2 x}{2 \cos 10 x \cdot \sin n x} \)
\( =-\frac{\sin 2 x}{\cos 10 x} \)
\( \therefore \) LHS \( = \) RHS
Hence, proved.
17. Prove that: \( \frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x \)
Answer
It is known that
\( =\sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right), \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{A+B}{2}\right) \) \( \cos \left(\frac{A-B}{2}\right) \)
L.H.S. \( =\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x} \)
\( =\frac{2 \sin \left(\frac{5 x+3 x}{2}\right) \cdot \cos \left(\frac{5 x-3 x}{2}\right)}{2 \cos \left(\frac{5 x+3 x}{2}\right) \cdot \cos \left(\frac{5 x-3 x}{2}\right)} \)
\( =\frac{2 \sin 4 x \cdot \cos x}{2 \cos 4 x \cdot \cos x} \)
\( =\frac{\sin 4 x}{\cos 4 x} \)
\( =\tan 4 x \)
\( \therefore \) LHS \( = \) RHS
Hence, proved.
18. Prove that: \( =\frac{\sin x-\sin y}{\cos x+\cos y}=\tan \frac{x-y}{2} \)
Answer
L.H.S. \( =\frac{\sin x-\sin y}{\cos x+\cos y} \)
\( =\frac{2 \cos \left(\frac{x+y}{2}\right) \cdot \sin \left(\frac{x-y}{2}\right)}{2 \cos \left(\frac{x+y}{2}\right) \cdot \cos \left(\frac{x-y}{2}\right)} \)
\( =\frac{\sin \left(\frac{x-y}{2}\right)}{\cos \left(\frac{x-y}{2}\right)} \)
\( =\tan \left(\frac{x-y}{2}\right) \)
\( \therefore \) LHS \( = \) RHS
Hence, proved.
19. Prove that: \( \frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}=\tan 2 x \)
Answer
L.H.S. \( =\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x} \)
\( =\frac{2 \sin \left(\frac{x+3 x}{2}\right) \cos \left(\frac{x-3 x}{2}\right)}{2 \cos \left(\frac{x+3 x}{2}\right) \cos \left(\frac{x-3 x}{2}\right)} \)
\( =\frac{\sin 2 x}{\cos 2 x} \)
\( =\tan 2 x \)
\( \therefore \) LHS \( = \) RHS
Hence, proved
20. Prove that: \( \cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x=1 \)
Answer
L.H.S. \( =\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x \)
\(=\cot x \cot 2 x-\cot 3 x(\cot 2 x+\cot x)\)
\(=\cot x \cot 2 x-\cot (2 x+x)(\cot 2 x+\cot x)\)
\(=\cot x \cot 2 x-\left[\frac{\cot 2 x \cot x-1}{\cot x+\cot 2 x}\right](\cot 2 x+\cot x)\)
\(=\left[\therefore \cot (A+B)=\frac{\cot A \cot B-1}{\cot A+\cot B}\right]\)
\(=\cot x \cot 2 x-(\cot 2 x \cot x-1)=1=\text { R.H.S. }\)
21. Prove that: \( \cos 4 x=1-8 \sin ^{2} x \cos ^{2} x \)
Answer
\(\text { L.H.S. }=\cos 4 x\)
\(=\cos 2(2 x)\)
\(=1-2 \sin ^{2} 2 x\left[\cos 2 \mathrm{~A}=1-2 \sin ^{2} \mathrm{~A}\right]\)
\(=1-2(2 \sin x \cos x) 2[\sin 2 \mathrm{~A}=2 \sin \mathrm{A} \operatorname{Cos} \mathrm{A}]\)
\(=1-8 \sin ^{2} x \cos 2 x=\text { R.H.S. }\)
22. Prove that: \( \cos 6 x=32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1 \)
Answer
\(\text { L.H.S. }=\cos 6 x\)
\(=\cos 3(2 x)\)
\(=4 \cos ^{3} 2 x-3 \cos 2 x\left[\cos 3 \mathrm{~A}=4 \cos ^{3} \mathrm{~A}-3 \cos \mathrm{A}\right]\)
\(=4\left[\left(2 \cos ^{2} x-1\right)^{3}-3\left(2 \cos ^{2} x-1\right)\left[\cos 2 x=2 \cos ^{2} x-1\right]\right.\)
\(=4\left[\left(2 \cos ^{2} x\right)^{3}-(1)^{3}-3\left(2 \cos ^{2} x\right)^{2}+3\left(2 \cos ^{2} x\right)\right]-6 \cos ^{2} x+3\)
\(=4\left[8 \cos ^{6} x-1-12 \cos ^{4} x+6 \cos ^{2} x\right]-6 \cos ^{2} x+3\)
\(=32 \cos ^{6} x-4-48 \cos ^{4} x+24 \cos ^{2} x-6 \cos ^{2} x+3\)
\(=32 \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1=\text { R.H.S. }\)