Ex 6.2 class 12 maths ncert solutions || class 12 maths exercise 6.2 || class 12 maths ncert solutions chapter 6 exercise 6.2 || exercise 6.2 class 12 maths ncert solutions || application of derivatives class 12 ncert solutions (English Medium)
NCERT Solutions for Class 12 Maths – Exercise 6.2 (Application of Derivatives)
Exercise 6.2 of Class 12 Maths NCERT Solutions is based on the concept of rate of change of quantities, a key part of the chapter Application of Derivatives. This exercise helps students understand how derivatives can be applied to measure how one quantity changes with respect to another, which is crucial in real-life mathematical modeling. The Class 12 Maths Exercise 6.2 NCERT Solutions offer clear, step-by-step explanations to build a strong foundation in calculus. Perfect for English Medium students, this content follows the CBSE curriculum precisely. By practicing with the Class 12 Maths NCERT Solutions Chapter 6 Exercise 6.2, students can enhance their analytical skills and become confident in solving problems involving changing rates. The Exercise 6.2 Class 12 Maths NCERT Solutions serve as a valuable resource for exam preparation and understanding practical applications of derivatives.

class 12 maths ncert solutions chapter 6 exercise 6.2 || class 12 maths exercise 6.2 || exercise 6.2 class 12 maths ncert solutions || application of derivatives class 12 ncert solutions || ex 6.2 class 12 maths ncert solutions
Exercise 6.2
Then, we have,
\(
x_{1} < x_{2}\)
\(\Rightarrow 3 x_{1} < 3x_{2}\)
\(\Rightarrow 3 x_{1}+17 < 3 x_{2}+17\)
\(\Rightarrow \mathrm{f}\left(x_{1}\right) < \mathrm{f}\left(x_{2}\right)
\)
Therefore, f is strictly increasing on R .
The, we have,
\(x_{1} < x_{2}\)
\(\Rightarrow 2 x_{1} < 2 x_{2}\)
\(\Rightarrow \mathrm{e}^{2 x_{1}} < \mathrm{e}^{2 x_{2}}\)
\(\Rightarrow \mathrm{f}\left(x_{1}\right) < \mathrm{f}\left(x_{2}\right)\)
Therefore, \( f \) is strictly increasing on \( R \)
3.
strictly increasing in \( \left(0, \frac{\pi}{2}\right) \)
Then, \( \mathrm{f}^{\prime}(x)=\cos x \)
Since for each \( x \in\left(0, \frac{\pi}{2}\right), \cos x > 0 \), we have \( f^{\prime}(x) > 0 \)
Therefore, \( \mathrm{f}^{\prime} \) is strictly increasing in \( \left(0, \frac{\pi}{2}\right) \).
Then, \( f^{\prime}(x)=\cos x \)
Since for each \( x \in\left(\frac{\pi}{2}, \pi\right), \cos x < 0 \), we have \( \mathrm{f}^{\prime}(x) < 0 \)
Therefore, \( \mathrm{f}^{\prime} \) is strictly decreasing in \( \left(\frac{\pi}{2}, \pi\right) \).
Then, \( \mathrm{f}^{\prime}(x)=\cos x \)
Since for each \( x \in\left(0, \frac{\pi}{2}\right), \cos x > 0 \), we have \( f^{\prime}(x) > 0 \)
Therefore, \( \mathrm{f}^{\prime} \) is strictly increasing in \( \left(0, \frac{\pi}{2}\right)\ldots(1) \)
Now, The function is \( f(x)=\sin x \)
Then, \( \mathrm{f}^{\prime}(x)=\cos x \)
Since, for each \( x \in\left(0, \frac{\pi}{2}\right), \cos x < 0 \), we have \( \mathrm{f}^{\prime}(x) < 0 \)
Therefore, \( \mathrm{f}^{\prime} \) is strictly decreasing in \( \left(\frac{\pi}{2}, \pi\right) \ldots(2)\)
From (1) and (2),
It is clear that f is neither increasing nor decreasing in \( (0, \pi) \).
class 12 maths ncert solutions chapter 6 exercise 6.2 || class 12 maths exercise 6.2 || exercise 6.2 class 12 maths ncert solutions || application of derivatives class 12 ncert solutions || ex 6.2 class 12 maths ncert solutions
4.
\(
\Rightarrow \mathrm{f}^{\prime}(x)=4 x-3
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
x=\frac{3}{4}
\)
So, the points \( \frac{3}{4} \) divides the real line into two disjoint intervals, \( \left(-\infty, \frac{3}{4}\right) \) and \( \left(\frac{3}{4}, \infty\right) \)

So, in interval \( \left(\frac{3}{4}, \infty\right), f^{\prime}(x)=4 x-3 > 0 \)
Therefore, the given function (f) is strictly increasing in interval \( \left(\frac{3}{4}, \infty\right) \).
\(\Rightarrow \mathrm{f}^{\prime}(x)=4x-3
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
x=\frac{3}{4}
\)
So, the points \( \frac{3}{4} \) divides the real line into two disjoint intervals, \( \left(-\infty, \frac{3}{4}\right) \) and \( \left(\frac{3}{4}, \infty\right) \).

So, in interval \( \left(-\infty, \frac{3}{4}\right) \quad f^{\prime}(x)=4 x-3 < 0 \)
Therefore, the given function ( f ) is strictly decreasing in interval \( \left(\frac{3}{4}, \infty\right) \).
5.
\(
\Rightarrow \mathrm{f}^{\prime}(x)=6 x^{2}-6 x+36\)
\(\Rightarrow \mathrm{f}^{\prime}(x)=6\left(x^{2}-x+6\right)\)
\(\Rightarrow \mathrm{f}^{\prime}(x)=6(x+2)(x-3)
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
\Rightarrow x=-2,3
\)
So, the points \( x=-2 \) and \( x=3 \) divides the real line into two disjoint intervals, \( (-\infty, 2),(-2,3) \) and \( (3, \infty) \)

So, in interval \( (-\infty, 2),(3, \infty) \)
\(
f^{\prime}(x)=6(x+2)(x-3) > 0
\)
Therefore, the given function (f) is strictly increasing in interval \( (-\infty, 2) \), \( (3, \infty) \).
\(
\begin{array}{l}
\Rightarrow \mathrm{f}^{\prime}(x)=6 x^{2}-6 x+36 \\
\Rightarrow \mathrm{f}^{\prime}(x)=6\left(x^{2}-x+6\right) \\
\Rightarrow \mathrm{f}^{\prime}(x)=6(x+2)(x-3)
\end{array}
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
\Rightarrow x=-2,3
\)
So, the points \( x=-2 \) and \( x=3 \) divides the real line into two disjoint intervals, \( (-\infty, 2),(-2,3) \) and \( (3, \infty) \)

So, in interval \( (-2,3) \)
\(
f^{\prime}(x)=6(x+2)(x-3) < 0
\)
Therefore, the given function ( f ) is strictly decreasing in interval \( (-2,3) \).
\(
f^{\prime}(x)=2 x+2
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
\Rightarrow x=-1
\)
So, the point \( x=-1 \) divides the real line into two disjoint intervals, \( (-\infty,- \) 1) and \( (1, \infty) \)
So, in interval \( (-\infty,-1) \)
\(
\mathrm{f}^{\prime}(x)=2 x+2 < 0
\)
Therefore, the given function (f) is strictly decreasing in interval \( (-\infty,-1) \).
And in interval \( (1, \infty) \)
\(
f^{\prime}(x)=2 x+2 > 0
\)
Therefore, the given function (f) is strictly increasing in interval \( (1, \infty) \). Thus, f is strictly increasing for \( x > -1 \).
10-6 x-2 x^{2}
\)
\(
f^{\prime}(x)=-6-4 x
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
\Rightarrow x=\frac{-3}{2} .
\)
So, the point \( x=\frac{-3}{2} \) divides the real line into two disjoint intervals,
\(
\left(-\infty, \frac{-3}{2}\right) \text { and }\left(\frac{-3}{2}, \infty\right)
\)
So, in interval \( \left(-\infty, \frac{-3}{2}\right) \)
\(
x < \frac{-3}{2}\)
\(-4 x > 6-6-4 x > 0\)
\(f^{\prime}(x)=-6-4 x > 0
\)
Therefore, the given function (f) is strictly increasing in interval \( \left(-\infty, \frac{-3}{2}\right) \).
And in interval \( \left(\frac{-3}{2}, \infty\right) \)
\(
f^{\prime}(x)=-6-4 x < 0
\)
Therefore, the given function (f) is strictly decreasing in interval \( \left(\frac{-3}{2}, \infty\right) \).
Thus, \( f \) is strictly decreasing for \( x > \frac{-3}{2} \).
\(
\Rightarrow f^{\prime}(x)=-6 x^{2}-18 x+12\)
\(\Rightarrow f^{\prime}(x)=-6\left(x^{2}+3 x+6\right)\)
\(\Rightarrow f^{\prime}(x)=-6(x+1)(x+2)
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
\Rightarrow x=-1 \text { and }-2
\)
So, the points \( x=-1 \) and \( x=-2 \) divides the real line into two disjoint intervals,
\(
(-\infty,-2),(-2,-1) \text { and }(-1, \infty)
\)
So, in interval \( (-\infty,-2),(-1, \infty) \)
\(
f^{\prime}(x)=-6(x+1)(x+2) < 0
\)
Therefore, the given function (f) is strictly decreasing for \( x < -2 \) and \( x > - \) 1 .
So, in interval \( (-2 .-1) \)
\(
f^{\prime}(x)=-6(x+1)(x+2) > 0
\)
Therefore, the given function (f) is strictly increasing for \( -2 < x < -1 \).
\(
f^{\prime}(x)=-9-2 x
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
\Rightarrow x=\frac{-9}{2}
\)
So, the point \( x=\frac{-9}{2} \) divides the real line into two disjoint intervals, \( \left(-\infty, \frac{-9}{2}\right) \) and \( \left(\frac{-9}{2}, \infty\right) \)
So, in interval \( \left(-\infty, \frac{-9}{2}\right) \)
\(
f^{\prime}(x)=-9-2 x > 0
\)
Therefore, the given function (f) is strictly increasing for \( x < \frac{-9}{2} \).
And in interval \( \left(\frac{-9}{2}, \infty\right) \)
\(
f^{\prime}(x)=-9-2 x < 0
\)
Therefore, the given function (f) is strictly decreasing for \( x > \frac{-9}{2} \).
Thus, f is strictly decreasing for \( x > \frac{-9}{2} \).
\(
\Rightarrow \mathrm{f}^{\prime}(x)=3(x+1)^{2}(x-3)^{3}+3(x+1)^{3}(x-3)^{2}\)
\(\Rightarrow \mathrm{f}^{\prime}(x)=3(x+1)^{2}(x-3)^{2}[x-3+x+1]\)
\(\Rightarrow \mathrm{f}^{\prime}(x)=6(x+1)^{2}(x-3)^{2}(x-1)
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
\Rightarrow x=-1,3 \text { and } 1
\)
So, the points \( x=-1, x=1 \) and \( x=3 \) divides the real line into four disjoint
intervals,
\(
(-\infty,-1),(-1,1),(-1,3) \text { and }(3, \infty)
\)
So, in interval \( (-\infty,-1),(-1,1) \)
\(
f^{\prime}(x)=6(x+1)^{2}(x-3)^{2}(x-1) < 0
\)
Therefore, the given function (f) is strictly decreasing in intervals \( (-\infty,-1),(-1,1) \).
So, in interval \( (1,3) \) and \( (3, \infty) \)
\(
f^{\prime}(x)=6(x+1)^{2}(x-3)^{2}(x-1) > 0
\)
Therefore, the given function (f) is strictly increasing in intervals \( (1,3) \) and \( (3, \infty) \).
\( \Rightarrow \frac{d y}{d x}=\frac{1}{1+x}-\frac{(2+x) \cdot 2-2 \times(1)}{(2+x)^{2}} \)
\( \Longrightarrow \frac{1}{1+x}-\frac{4+2 x-2 x}{(2+x)^{2}}=\frac{1}{1+x}-\frac{4}{(2+x)^{2}} \)
\( =\frac{(2+x)^{2}-4(1+x)}{(1+x)(2+x)^{2}} \)
\( =\frac{\left(4+x^{2}+4 x\right)-(4-4 x)}{(1+x)(2+x)^{2}} \)
\( =\frac{x^{2}}{(1+x)(2+x)^{2}} \)
\( =\frac{d y}{d x}=\frac{1}{1+x}\left(\frac{x}{2+x}\right)^{2} \)
Now, \( x > -1 \)
\( \Rightarrow 1+x > 0 \)
Also, for all \( x > -1, \frac{x}{x+2 x} > 0 \)
\( \Rightarrow \frac{d y}{d x}=\frac{1}{1+x}\left(\frac{x}{2+x}\right)^{2} > \) for \( x > -1 \)
Therefore, \( f \) is an increasing function throughout its domain.
class 12 maths ncert solutions chapter 6 exercise 6.2 || class 12 maths exercise 6.2 || exercise 6.2 class 12 maths ncert solutions || application of derivatives class 12 ncert solutions || ex 6.2 class 12 maths ncert solutions
\(
\frac{d y}{d x}=y^{\prime}=2\left(x^{2}-2 x\right)(2 x-2)\)
\(=4 x(x-2)(x-1)
\)
Now if \( \frac{d y}{d x}=0 \)
\(
\Rightarrow x=0,1,2
\)
So, the points \( x=0, x=1 \) and \( x=2 \) divides the real line into four disjoint intervals,
\(
(-\infty, 0),(0,1),(1,2) \text { and }(2, \infty)
\)
So, in interval \( (-\infty, 0),(1,2) \)
\(
\frac{d y}{d x} < 0
\)
Therefore, the given function (f) is strictly decreasing in intervals (\( \infty, 0),(1,2) \)
So, in interval \( (0,1) \) and \( (2, \infty) \)
\(
\frac{d y}{d x} > 0
\)
Therefore, the given function (f) is strictly increasing for \( 0 < x < 1 \) and \( x > 2 \)
\(
\therefore \frac{d y}{d x}=\frac{(2+\cos \theta)(4 \cos \theta)-4 \sin \theta(-\sin \theta)}{(2+\cos \theta)^{2}}-1\)
\(=\frac{8 \cos \theta+4 \cos ^{2} \theta-4 \sin \theta(-\sin \theta)}{(2+\cos \theta)^{2}}-1
\)
\(
=\frac{8 \cos \theta+4 \cos ^{2} \theta+4 \sin ^{2} \theta}{(2+\cos \theta)^{2}}-1\)
\(=\frac{8 \cos \theta+4}{(2+\cos \theta)^{2}}-1
\)
Now, \( \frac{d y}{d x}=0 \)
\(
\Rightarrow \frac{8 \cos \theta+4}{(2+\cos \theta)^{2}}=1\)
\(\Rightarrow 8 \cos \theta+4=4+\cos ^{2} \theta+4 \cos \theta\)
\(\Rightarrow \cos ^{2} \theta-4 \cos \theta=0\)
\(\Rightarrow \cos \theta(\cos \theta-4)=0\)
\(\Rightarrow \cos \theta=0 \text { or } \cos \theta=4
\)
Since, \( \cos \theta \neq 0 \Longrightarrow \theta=\frac{\pi}{2} \)
\(
\Longrightarrow \cos \theta=0 \Longrightarrow \theta=\frac{\pi}{2}
\)
Now, \( \frac{d y}{d x}=\frac{8 \cos \theta+4-\left(4 \cos ^{2} \theta+4 \sin ^{2} \theta\right)}{(2+\cos \theta)^{2}} \)
\(
=\frac{4 \cos \theta-\cos ^{2} \theta}{(2+\cos \theta)^{2}}\)
\(=\frac{4 \cos \theta(4-\cos \theta)}{(2+\cos \theta)^{2}}
\)
In interval, \( \left(0, \frac{\pi}{2}\right) \), we have \( \cos \theta > 0 \). Also, \( 4 > \cos \theta \)
\(
\Rightarrow 4-\cos \theta > 0
\)
Therefore, \( \cos \theta(4-\cos \theta) > 0 \) and also \( (2+\cos \theta)^{2} > 0 \)
\(
\Rightarrow \frac{\cos \theta(4-\cos \theta)}{(2+\cos \theta)^{2}} > 0\)
\(\Rightarrow \frac{d y}{d x} > 0
\)
Therefore, \(y\) is strictly increasing in interval \( \left(0, \frac{\pi}{2}\right) \).
Also, the given function is continuous at \( x=0 \) and \( x=\frac{\pi}{2} \).
Therefore, \(y\) is increasing in interval \( \left[0, \frac{\pi}{2}\right] \).
\(
\Rightarrow f^{\prime}=\frac{1}{x}
\)
It is clear that for \( x > 0, f^{\prime}=\frac{1}{x} > 0 \)
Therefore, \( \mathrm{f}(x)=\log x \) is strictly increasing in interval \( (0, \infty) \).
\( \mathrm{f}^{\prime}(x)=2 x-1 \)
If \( f^{\prime}(x)=0 \), then we get,
\( \Rightarrow x=\frac{1}{2} \)
So, the point \( x=\frac{1}{2} \) divides the interval \( (-1,1) \) into two disjoint intervals, \( \left(-1, \frac{1}{2}\right) \) and \( \left(\frac{1}{2}, 1\right) \)
So, in interval \( \left(-1, \frac{1}{2}\right) \)
\( \mathrm{f}^{\prime}(x)=2 x-1 < 0 \)
Therefore, the given function (f) is strictly decreasing in interval \( \left(-1, \frac{1}{2}\right) \)
So, in interval \( \left(\frac{1}{2}, 1\right) \).
\(
\mathrm{f}^{\prime}(x)=2 x-1 > 0
\)
Therefore, the given function (f) is strictly increasing in interval for \( \left(\frac{1}{2}, 1\right) \)
Therefore, \( f \) is neither strictly increasing and decreasing in interval (\( 1,1) \).
A. \( \cos x \) B. \( \cos 2 x \) C. \( \cos 3 x \) D. \( \tan x \)
\(
\therefore f_{1}^{\prime}=-\sin x
\)
In interval \( \left(0, \frac{\pi}{2}\right), f_{1}^{\prime}=-\sin x < 0 \).
Therefore, \( f_{1}(x)=\cos x \) is strictly decreasing in interval \( \left(0, \frac{\pi}{2}\right) \).
(B) Let \( \mathrm{f}_{2}(x)=\cos 2 x \)
\(
\therefore f_{2}^{\prime}(x)=-2 \sin 2 x
\)
Now, \( 0 < x < \frac{\pi}{2} \)
\(
\begin{array}{l}
\Rightarrow 0 < 2 x < \pi \\
\Rightarrow \sin 2 x > 0 \\
\Rightarrow-2 \sin 2 x < 0
\end{array}
\)
\(
\therefore f_{2}^{\prime}(x)=-2 \sin 2 x < 0 \text { on }\left(0, \frac{\pi}{2}\right)
\)
Therefore, \( f_{2}(x)=\cos 2 x \) is strictly decreasing in interval \( \left(0, \frac{\pi}{2}\right) \).
(C) Let \( \mathrm{f}_{3}(x)=\cos 3 x \)
\(
\therefore f_{3}^{\prime}(x)=-3 \sin 3 x
\)
Now, \( f_{3}^{\prime}=0 \)
\( \Rightarrow \sin 3 x=0 \)
\( \Rightarrow 3 x=\pi \), as \( x \in\left(0, \frac{\pi}{2}\right) \)
\(
\Rightarrow x=\frac{\pi}{3}
\)
The point \( x=\frac{\pi}{3} \) divides the interval \( \left(0, \frac{\pi}{2}\right) \) into two distinct intervals.
i.e. \( \left(0, \frac{\pi}{3}\right) \) and \( \left(\frac{\pi}{3}, \frac{\pi}{2}\right) \)
Now, in interval \( \left(0, \frac{\pi}{3}\right) \),
\( \mathrm{f}_{3}^{\prime}(x)=-3 \sin 3 x < 0 \) as \( \left(0 < x < \frac{\pi}{2} \Rightarrow 0 < 3 x < \pi\right) \)
Therefore, \( f_{3} \) is strictly decreasing in interval \( \left(0, \frac{\pi}{3}\right) \).
Now, in interval \( \left(\frac{\pi}{3}, \frac{\pi}{2}\right) \).
\(
f_{3}^{\prime}(x)=-3 \sin 3 x > 0 \text { as } \frac{\pi}{3} < x < \frac{\pi}{3} \Rightarrow \pi < 3 x < \frac{3 \pi}{2}
\)
Therefore, \( \mathrm{f}_{3} \) is strictly increasing in interval \( \left(\frac{\pi}{3}, \frac{\pi}{2}\right) \).
(D) Let \( \mathrm{f}_{4}=\tan x \)
\( \therefore \mathrm{f}_{3}{ }^{\prime}(x)=\sec ^{2} x \)
In interval \( \left(0, \frac{\pi}{2}\right) \),
\(
f_{3}^{\prime}=\sec ^{2} x > 0
\)
Therefore, f 4 is strictly increasing in interval \( \left(0, \frac{\pi}{2}\right) \).
A. \( (0,1) \) B. \( \left(\frac{\pi}{2}, \pi\right) \) C. \( \left(0, \frac{\pi}{2}\right) \) D. None of these
Then, \( f^{\prime}(x)=100 x^{99}+\cos x \)
In interval \( (0,1), \cos x > 0 \) and \( 100 x^{99} > 0 \)
\(
\Rightarrow \mathrm{f}^{\prime}(x) > 0
\)
Therefore, function f is strictly increasing in interval \( (0,1) \).
In interval \( \left(\frac{\pi}{2}, \pi\right), \cos x < 0 \) and \( 100 x^{99} > 0 \).
Also, \( 100 x^{99} > \cos x \)
\(
\Rightarrow \mathrm{f}^{\prime}(x) > 0 \text { in }\left(\frac{\pi}{2}, \pi\right)
\)
Therefore, function f is strictly increasing in interval \( \left(\frac{\pi}{2}, \pi\right) \).
In interval \( \left(0, \frac{\pi}{2}\right), \cos x < 0 \) and \( 100 x^{99} > 0 \).
Also, \( 100 x^{99} > \cos x \)
\(
\Rightarrow \mathrm{f}^{\prime}(x) > 0 \text { on }\left(0, \frac{\pi}{2}\right)
\)
Therefore, function f is strictly increasing in interval \( \left(0, \frac{\pi}{2}\right) \).
Hence, function f is strictly decreasing on none of the intervals.
\(
f^{\prime}(x)=2 x+a
\)
Now, function f will be increasing in \( [1,2] \),
\(
\text { if } f^{\prime}(x) > 0 \text { in }[1,2]\)
\(\Rightarrow 2 x+a > 0\)
\(\Rightarrow 2 x > -a
\)
\(
\Rightarrow \mathrm{a} < -2 x
\)
Therefore, we have to find the least value of a such that
\(
\Rightarrow \mathrm{a} < -2 x \text { when } x \in[1,2]
\)
Now, \( 1 \leq x \leq 2 \)
\(
\Rightarrow-4 \leq-2 x \leq-2
\)
Therefore, the least value of a for \( f \) to be increasing on \( [1,2] \) is given by
\(
\Rightarrow \mathrm{a}=-4
\)
Therefore, the least value of a is -4 .
\(
\therefore \mathrm{f}^{\prime}(x)=1-\frac{1}{x^{2}}
\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(
\Rightarrow x= \pm 1
\)
The points \( x=1 \) and \( x=-1 \) divide the real line in three disjoint intervals \( (-\infty,-1),(-1,1) \) and \( (1, \infty) \)
Now in interval, \( (-1,1) \)
it is clear that \( -1 < x < 1 \)
\(
\Rightarrow x^{2} < 1
\)
\(
\Rightarrow 1-\frac{1}{x^{2}} < 0, x \neq 0\)
Therefore, \( \mathrm{f}^{\prime}(x)=1-\frac{1}{x^{2}} < 0(-1,1) \sim\{0\} \)
Therefore, f is strictly decreasing on \( (-1,1) \sim\{0\} \)
\(
x < -1 \text { or } 1 < x\)
\(\Rightarrow x^{2} > 1\)
\(\Rightarrow 1-\frac{1}{x^{2}}\)
\(\Rightarrow 1-\frac{1}{x^{2}} > 0
\)
Therefore, \( \mathrm{f}^{\prime}(x)=1-\frac{1}{x^{2}} > 0(-\infty,-1) \) and \( (1, \infty) \)
Therefore, fis strictly increasing in interval I disjoint from ( \( -1,1 \) ) Hence Proved.
\( \Rightarrow f^{\prime}(x)=\frac{1}{\sin x} \cos x=\cot x \)
In interval \( \left(0, \frac{\pi}{2}\right), \mathrm{f}^{\prime}(x)=\cot x > 0 \)
Therefore, f is strictly increasing in \( \left(0, \frac{\pi}{2}\right) \).
In interval \( \left(\frac{\pi}{2}, \pi\right), \mathrm{f}^{\prime}(x)=\cot x < 0 \)
Therefore, f is strictly decreasing in \( \left(\frac{\pi}{2}, \pi\right) \).
\( \Rightarrow f^{\prime}(x)=\frac{1}{\cos x}(-\sin x)=-\tan x \)
In interval \( \left(0, \frac{\pi}{2}\right), \mathrm{f}^{\prime}(x)=-\tan x < 0 \)
Therefore, f is strictly decreasing on \( \left(0, \frac{\pi}{2}\right) \).
In interval \( \left(\frac{3 \pi}{2}, 2 \pi\right), \mathrm{f}^{\prime}(x)=-\tan x > 0 \)
Therefore, f is strictly increasing in \( \left(\frac{3 \pi}{2}, 2 \pi\right) \).
\(
\Rightarrow f^{\prime}(x)=3 x^{2}-6 x+3\)
\(=3\left(x^{2}-2 x+1\right)
\)
\(
=3(x-1) 2
\)
For any \( x \in \mathrm{R},(x-1) 2 > 0 \)
Thus, \( f^{\prime}(x) \) is always positive in \( R \).
Therefore, the given function ( \( f \) ) is increasing in \( R \).
A. \( (-\infty, \infty) \) B. \( (-2,0) \) C. \( (2, \infty) \) D. \( (0,2) \)
Now if \( \frac{d y}{d x}=0 \)
\( \Rightarrow x=0 \) and \( x=2 \)
The points \( x=0 \) and \( x=2 \) divide the real line into three disjoint intervals ie, \( (-\infty, 0),(0,2) \) and \( (2, \infty) \).
In interval \( (-\infty, 0) \) and \( (2, \infty) \),
\( \mathrm{f}^{\prime}(x) < 0 \) as \( \mathrm{e}^{-x} \) is always positive.
Therefore, fis decreasing on \( (-\infty, 0) \) and \( (2, \infty) \).
In interval \( (0,2), \mathrm{f}^{\prime}(x) > 0 \)
Therefore, f is strictly increasing in interval (0.2).