Ex 6.1 class 12 maths ncert solutions || class 12 maths exercise 6.1 || class 12 maths ncert solutions chapter 6 exercise 6.1 || exercise 6.1 class 12 maths ncert solutions || application of derivatives class 12 ncert solutions (English Medium)
NCERT Solutions for Class 12 Maths – Exercise 6.1 (Application of Derivatives)
Exercise 6.1 of Class 12 Maths NCERT Solutions is based on the concept of rate of change of quantities, a key part of the chapter Application of Derivatives. This exercise helps students understand how derivatives can be applied to measure how one quantity changes with respect to another, which is crucial in real-life mathematical modeling. The Class 12 Maths Exercise 6.1 NCERT Solutions offer clear, step-by-step explanations to build a strong foundation in calculus. Perfect for English Medium students, this content follows the CBSE curriculum precisely. By practicing with the Class 12 Maths NCERT Solutions Chapter 6 Exercise 6.1, students can enhance their analytical skills and become confident in solving problems involving changing rates. The Exercise 6.1 Class 12 Maths NCERT Solutions serve as a valuable resource for exam preparation and understanding practical applications of derivatives.

application of derivatives class 12 ncert solutions || exercise 6.1 class 12 maths ncert solutions || ex 6.1 class 12 maths ncert solutions || class 12 maths exercise 6.1 || class 12 maths ncert solutions chapter 6 exercise 6.1
Exercise 6.1
1.
Then, Rate of change of the area with respect to its radius is given by, \( \frac{d A}{d r}=\frac{d\left(\pi r^{2}\right)}{d r}=2 \pi \mathrm{r} \)
When \( \mathrm{r}=3 \mathrm{~cm} \)
\(\frac{d A}{d r}=2 \pi(3)=6 \pi
\)
Then
Therefore, the area of the circle is changing at the rate of \( 6 \pi \mathrm{cm}^2 / \mathrm{s} \) when its radius is 3 cm .
Then, Rate of change of the area with respect to its radius is given by, \( \frac{d A}{d r}=\frac{d\left(\pi r^{2}\right)}{d r}=2 \pi \mathrm{r} \)
When \( \mathrm{r}=4 \mathrm{~cm} \)
Then
\(
\frac{d A}{d r}=2 \pi(4)=8 \pi
\)
Therefore, the area of the circle is changing at the rate of \( 8 \pi \mathrm{cm}^{2} / \mathrm{s} \) when its radius is 4 cm .
Then, \( V=a^{3} \) and \( S=6 a^{2} \) where \( a \) is the function of time \( t \).
Now, It is given that \( \frac{d V}{d t}=8 \mathrm{~cm}^{3} / \mathrm{s} \)
Then, by using the chain rule, we get,
\( 8=\frac{d V}{d t}=\frac{d\left(a^{3}\right)}{d t}=\frac{d\left(a^{3}\right)}{d t} \cdot \frac{d a}{d t}=3 a^{2} \cdot \frac{d a}{d t} \)
\( \Rightarrow \frac{d a}{d t}=\frac{8}{3 a^{2}} \ldots(i)\)
\( \frac{d s}{d t}=\frac{d\left(6 a^{2}\right)}{d t}=\frac{d\left(6 a^{2}\right)}{d t} \cdot \frac{d a}{d t}=12 \mathrm{a} \cdot \frac{d a}{d t}=12 a. \frac{8}{3 a^{2}}=\frac{32}{a} \ldots(ii)\)
So, when \( \mathrm{a}=12 \mathrm{~cm} \), then, \( \frac{d s}{d t}=\frac{32}{12}=\frac{8}{3} \mathrm{~cm}^{3} / \mathrm{s} \)
Therefore, if the length of the edge of the cube is 12 cm , then the surface area is increasing at the rate of \( \frac{8}{3} \mathrm{~cm}^{3} / \mathrm{s} \).
Then, Rate of change of the area with respect to time is given by, \( \frac{d A}{d t}=\frac{d\left(\pi r^{2}\right)}{d t}=\frac{d\left(\pi r^{2}\right)}{d t} \cdot \frac{d r}{d t}=2 \pi \mathrm{r} \cdot \frac{d r}{d t} \)
It is given that
\(\frac{d r}{d t}=3 \mathrm{~cm} / \mathrm{s}\)
Then, \( \frac{d A}{d r}=2 \pi(3)=6 \pi \mathrm{r} \)
Thus, when \( \mathrm{r}=10 \mathrm{~cm} \)
Then, \( \frac{d A}{d r}=6 \pi(10)=60 \pi \mathrm{cm}^{2} / \mathrm{s} \).
Therefore, the rate at which the area of the circle is increasing when the radius is 10 cm is \( 60 \pi \mathrm{cm}^{2} / \mathrm{s} \).
\( \mathrm{v}=x^{3} \)
\( \frac{d v}{d t}=\frac{d\left(x^{3}\right)}{d t}=3 x^{2} \cdot \frac{d x}{d t}=3 x^{2} \cdot \frac{d x}{d t} \ldots \).by chain rule
It is given that
\(
\frac{d x}{d t}=3 \mathrm{~cm} / \mathrm{s}
\)
Then, \( \frac{d v}{d r}=3 x^{2}(3)=9 x^{2} \)
Thus, when \( \mathrm{x}=10 \mathrm{~cm} \)
Then, \( \frac{d v}{d r}=9(10)^{2}=900 \mathrm{~cm}^{3} / \mathrm{s} \).
Therefore, the volume of the cube increasing when the edge is 10 cm long is \( 900 \mathrm{~cm}^{3} / \mathrm{s} \).
Then, Rate of change of the area with respect to time \( (\mathrm{t}) \) is given by, \( \frac{d A}{d t}=\frac{d\left(\pi r^{2}\right)}{d t}=\frac{d\left(\pi r^{2}\right)}{d t} \cdot \frac{d r}{d t}=2 \pi r \cdot \frac{d r}{d t} \ldots \).by chain rule
It is given that
\(
\frac{d r}{d t}=5 \mathrm{~cm} / \mathrm{s}
\)
Then, \( \frac{d A}{d r}=2 \pi(5)=10 \pi \mathrm{r} \)
Thus, when \( \mathrm{r}=8 \mathrm{~cm} \)
Then, \( \frac{d A}{d r}=10 \pi(8)=80 \pi \mathrm{cm}^{2} / \mathrm{s} \).
Therefore, when the radius of the circular wave is 8 cm , how fast is the enclosed area increasing is \( 80 \pi \mathrm{cm}^{2} / \mathrm{s} \).
Then, Rate of change of circumference with respect to time \( (t) \) is given by,
\( \frac{d C}{d t}=\frac{d(2 \pi \mathrm{r})}{d t}=\frac{d(2 \pi \mathrm{r})}{d t} \cdot \frac{d r}{d t}=2 \pi \cdot \frac{d r}{d t} \)...by chain rule
It is given that
\(
\frac{d r}{d t}=0.7 \mathrm{~cm} / \mathrm{s}
\)
Then, \( \frac{d C}{d r}=2 \pi(0.7)=1.4 \pi \mathrm{cm} / \mathrm{s} \)
Therefore, the rate of increase of its circumference is \( 1.4 \pi \mathrm{cm} / \mathrm{s} \).
application of derivatives class 12 ncert solutions || exercise 6.1 class 12 maths ncert solutions || ex 6.1 class 12 maths ncert solutions || class 12 maths exercise 6.1 || class 12 maths ncert solutions chapter 6 exercise 6.1
The perimeter \( (\mathrm{P}) \) of a rectangle is given by:
\(P=2(x+y)
\)
\(\therefore \frac{d p}{d t}=2\left(\frac{d x}{d t}+\frac{d y}{d t}\right)\)
\(=2(-5+4)=-2 \mathrm{~cm} / \mathrm{min}
\)
Therefore, the rate of change of the perimeter is \( -2 \mathrm{~cm} / \mathrm{min} \).
(b) It is given that the length \(( x )\) is decreasing at the rate of \( 5 \mathrm{~cm} / \) minute and the width \(( y )\) is increasing at the rate of \( 4 \mathrm{~cm} / \) minute, then we have, \( \frac{d x}{d t}=-5 \mathrm{~cm} / \) minute and \( \frac{d y}{d t}=4 \mathrm{~cm} / \mathrm{min} \)
Now, the area (A) of the rectangle is given by
\(
\mathrm{A}=x \times y\)
\(\therefore \frac{d A}{d t}=\frac{d x}{d t} \cdot y+x \cdot \frac{d y}{d t}\)
\(=-5 y+4 x
\)
So, when \(x=8 \mathrm{~cm} \) and \( y=6 \mathrm{~cm} \), then,
\(
\frac{d A}{d t}=\frac{(-5 \times 6+4 \times 8) \mathrm{cm}^{2}}{\min }=2 \mathrm{~cm}^{2} / \mathrm{min}
\)
Therefore, the rate of change of the area of the rectangle is \( 2 \mathrm{~cm}^{2} / \mathrm{min} \).
\(
\mathrm{V}=\frac{4}{3} \pi r^{3}
\)
Therefore, Rate of change of volume \( (\mathrm{V}) \) with respect to time \( (\mathrm{t}) \) is given by,
\( \frac{d v}{d t}=\frac{d\left(\frac{4}{3} \pi r^{3}\right)}{d t} \cdot \frac{d r}{d t}=4 \pi r^{2} \cdot \frac{d r}{d t} \ldots \ldots \) by chain rule
It is given that
\(\frac{d v}{d t}=900 \mathrm{~cm}^{3} / \mathrm{s}\)
Then, \( 900=4 \pi r^{2} \cdot \frac{d r}{d t} \)
\( \Rightarrow \) when \( \mathrm{r}=15 \mathrm{~cm} \)
Then, \( \frac{d v}{d r}=\frac{225}{\pi 15^{2}}=\frac{1}{\pi} \)
Therefore, the rate at which the radius of the balloon increases when the radius is 15 cm is \( \frac{1}{\pi} \mathrm{cm} / \mathrm{s} \).
\(\mathrm{V}=\frac{4}{3} \pi r^{3}\)
Therefore, Rate of change of volume \( (\mathrm{V}) \) with respect to its radius ( r ) is given by,
\( \frac{d V}{d r}=\frac{d\left(\frac{4}{3} \pi r^{3}\right)}{d t}=\frac{4}{3} \pi\left(3 r^{2}\right)=4 \pi r^{2} \ldots . \). by chain rule
Thus, when \( \mathrm{r}=10 \mathrm{~cm} \)
Then, \( \frac{d V}{d r}=4 \pi(10)^{2}=400 \pi \)
Therefore, the rate at which its volume is increasing with the radius when the later is 10 cm is \( 400 \pi \mathrm{cm}^{3} / \mathrm{s} \).
we know that, by Pythagoras theorem,
\(
\Rightarrow x^{2}+y^{2}=25\)
\(\Rightarrow y=\sqrt{25-x^{2}}
\)
Then, the rate of change of height \((y)\) with respect to time \((t)\) is given by: \( \frac{d y}{d t}=\frac{-x}{\sqrt{25-x^{2}}} \cdot \frac{d x}{d t} \)
Now, it is given that \( \frac{d x}{d t}=\frac{2 c m}{s} \).
Therefore,
\(\frac{d y}{d t}=\frac{-2 x}{\sqrt{25-x^{2}}}\)
And when \(x=4 \mathrm{~m} \), then
\(\frac{d y}{d t}=\frac{-2 \times 4}{\sqrt{25-4^{2}}}=\frac{8}{3}\)
Therefore, the height of the ladder on the wall is decreasing at the rate of \( \frac{8}{3} \mathrm{~m} / \mathrm{s} \).
application of derivatives class 12 ncert solutions || exercise 6.1 class 12 maths ncert solutions || ex 6.1 class 12 maths ncert solutions || class 12 maths exercise 6.1 || class 12 maths ncert solutions chapter 6 exercise 6.1
The rate of change of the position of the particle with respect to time \( (t) \) is given by:
\(
6 \frac{d y}{d t}=3 x^{2} \cdot \frac{d x}{d t}+0\)
\(\Rightarrow 2 \frac{d y}{d t}=x^{2} \cdot \frac{d x}{d t} \ldots(i)\)
When the \(y\)- coordinate of the particle changes 8 times as fast as the \( x- \) coordinate then, we have,
\(\left(\frac{d y}{d t}=8 \frac{d x}{d t}\right)\)
So, putting the value in (1), we get,
\(
\Rightarrow 2\left(8 \frac{d x}{d t}\right)=x^{2} \cdot \frac{d x}{d t}\)
\(\Rightarrow 16 \frac{d x}{d t}=x^{2} \cdot \frac{d x}{d t}\)
\(\Rightarrow\left(x^{2}-16\right) \cdot \frac{d x}{d t}=0\)
\(\Rightarrow x^{2}=16\)
\(\Rightarrow x= \pm 4
\)
So, when \( x= \pm 4 \), then \( y=\frac{(4)^{3}+2}{6}=\frac{66}{6}=11 \)
And
So, when \( x=-4 \), then, \( y=\frac{-62}{6}=\frac{-31}{2} \)
Therefore, the points required on the curve are \( (4,11) \) are \( (-4,\frac{-31}{2}) \).
Therefore, V be the volume of the sphere, then \( \mathrm{V}=\frac{4}{3} \pi r^{3} \)
Therefore, Rate of change of volume \( (\mathrm{V}) \) with respect to time \( (\mathrm{t}) \) is given by,
\( \frac{d V}{d t}=\frac{d\left(\frac{4}{3} \pi r^{3}\right)}{d t} \cdot \frac{d r}{d t}=4 \pi r^{2} \cdot \frac{d r}{d t} \ldots \)by chain rule
It is given that
\( \frac{d r}{d t}=\frac{1}{2} \mathrm{~cm} / \mathrm{s} \)
when \( \mathrm{r}=1 \mathrm{~cm} \)
Then, \( \frac{d V}{d r}=4 \pi 1^{2} \cdot \frac{1}{2}=2 \pi c \mathrm{~m}^{3} / \mathrm{s} \)
Therefore, the rate is the volume of the bubble increasing when the radius is 1 cm is \( 2 \pi \mathrm{cm}^{3} / \mathrm{s} \).
\(
\mathrm{V}=\frac{4}{3} \pi r^{3}
\)
It is given that, Diameter \( =\frac{3}{2}(2 x+1) \)
\(
\Rightarrow \mathrm{r}=\frac{3}{4}(2 x+1)\)
\(\therefore \mathrm{V}=\frac{4}{3} \pi r\left(\frac{3}{4}\right)^{3}(2 x+1)^{3}\)
\(\Rightarrow \mathrm{V}=\frac{9}{16} \pi(2 x+1)^{3}
\)
Now, the rate of change of its volume with respect to \(x\) is as
\(
\frac{d V}{d t}=\frac{9}{16} \pi(2 x+1)^{3}=\frac{9}{16} \pi \times 3(2 x+1)^{2} \times 2\)
\(=\frac{27}{8} \pi(2 x+1)^{2}
\)
Therefore, the rate of change of its volume with respect to \(x\) is \( \frac{27}{8} \) \( \pi(2 x+1)^{2} \mathrm{~cm}^{3} / \mathrm{s} \).
\(
\mathrm{V}=\frac{1}{3} \pi r^{2} h
\)
It is given that, \( \mathrm{h}=\frac{3}{2} \mathrm{r} \)
\(
\Rightarrow r=6 h
\)
Therefore, \( \mathrm{V}=\frac{1}{3} \pi(6 h)^{2} h=12 \pi h^{3} \)
Now, the rate of change of its volume with respect to time \( (\mathrm{t}) \) is given by:
Now, the rate of change of its volume with respect to \(x\) is as
\( \frac{d v}{d t}=12 \pi \frac{d(h)^{2}}{d t} \ldots\) by chain rule
\(
\Rightarrow \frac{d v}{d t}=12 \pi\left(3 h^{2}\right) \frac{d h}{d t}=36 \pi h^{2} \frac{d h}{d t}\ldots(i)\)
Now, it is also given that
\( \frac{d V}{d t}=12 \mathrm{~cm}^{3} / \mathrm{s} \) and \( \mathrm{h}=4 \mathrm{~cm} \)
So, putting the value in equation (1), we get
\(
\Rightarrow 12=36 \pi 4^{2} \frac{d h}{d t}\)
\(\Rightarrow \frac{d h}{d t}=\frac{12}{36 \pi(16)}=\frac{1}{48 \pi}
\)
Therefore, the height of the sand cone increasing when the height is 4 cm is \( \frac{1}{48 \pi} \mathrm{cm} / \mathrm{s} \).
\(
C(x)=0.007 x^{3}-0.003 x^{2}+15 x+4000
\)
Find the marginal cost when 17 units are produced.
Then,
\(
\mathrm{MC}=\frac{d C}{d x}=0.007\left(3 x^{2}\right)-0.003(2 x)+15\)
\(=0.021 x^{2}-0.006 x+15
\)
So, when \( x=17 \) then,
\(
\mathrm{MC}=0.021\left(17^{2}\right)-0.006(17)+15\)
\(=0.021(289)-0.102+15\)
\(=20.967
\)
Therefore, the marginal cost when \(17\) units are produced is Rs. \(20.967\).
\(
R(x)=13 x^{2}+26 x+15
\)
Find the marginal revenue when \( x=7 \).
Then,
\(
\mathrm{MR}=\frac{d R}{d x}=13(2 x)+26=26 x+26
\)
So, when \( x=7 \) then,
\(
\mathrm{MR}=26(7)+26=208
\)
Therefore, the marginal revenue when \( x=7 \) is Rs. 208 .
A. \( 10 \pi \) B. \( 12 \pi \) C. \( 8 \pi \) D. \( 11 \pi \)
Then, Rate of change of the area with respect to its radius is given by, \( \frac{d A}{d r}=\frac{d\left(\pi r^{2}\right)}{d r}=2 \pi \mathrm{r} \)
When \( \mathrm{r}=6 \mathrm{~cm} \)
Then,\( \frac{d A}{d r}=2 \pi(6)=12 \pi \mathrm{r} \)
Therefore, the area of the circle is changing at the rate of \( 12 \pi \mathrm{cm}^2 / \mathrm{s} \) when its radius is 6 cm .
\( R(x)=3 x^{2}+36 x+5 \). The marginal revenue, when \( x=15 \) is
A. 116 B. 96 C. 90 D. 126
Then,
\(
\mathrm{MR}=\frac{d R}{d x}=3(2 x)+36=6 x+36
\)
So, when \( x=15 \) then,
\(
M R=6(15)+36=126
\)
Therefore, the marginal revenue when \( x=15 \) is Rs. 126 .