Ex 9.3 class 11 maths ncert solutions | Class 11 rd sharma exercise 9.3 solutions | class 11 maths exercise 9.3 solutions | exercise 9.3 class 11 maths solutions | class 11 ch 9 exercise 9.3 solutions | class 11 chapter 9 exercise 9.3 solution | class 11 maths ncert solutions chapter 9 | ncert solutions for class 11 maths chapter 9 | ncert exemplar class 11 maths | sequences and series class 11 ncert solutions
Looking for Ex 9.3 Class 11 Maths NCERT Solutions? You’re in the right place! This section provides detailed, step-by-step solutions for all questions from Exercise 9.3 of Chapter 9 – Sequences and Series. These solutions follow the latest NCERT syllabus and focus on Geometric Progressions (GP) — including finding the nth term, sum of n terms, and special properties of GP. Whether you’re working through Class 11 Ch 9 Exercise 9.3, checking your answers with the RD Sharma Exercise 9.3 Solutions, or referring to the NCERT Exemplar Class 11 Maths, these explanations will help you understand and apply GP concepts confidently. View or download the complete Class 11 Maths NCERT Solutions Chapter 9 and build a strong foundation in Sequences and Series Class 11 today!
 
															ncert exemplar class 11 maths || ncert solutions for class 11 maths chapter 9 || class 11 maths exercise 9.3 solutions || sequences and series class 11 ncert solutions || exercise 9.3 class 11 maths solutions || class 11 maths ncert solutions chapter 9 || class 11 ch 9 exercise 9.3 solutions || class 11 chapter 9 exercise 9.3 solution || ex 9.3 class 11 maths ncert solutions || Class 11 rd sharma exercise 9.3 solutions
Exercise 9.3
Here, \( {a}= \) first term \( =\frac{5}{2} \)
\( r= \) common ratio \( =\frac{\frac{5}{4}}{\frac{5}{2}}=\frac{1}{2} \)
\( {a}_{20}=ar^{20-1}=\frac{5}{2}\left(\frac{1}{2}\right)^{19}=\frac{5}{2(2)^{19}}=\frac{5}{(2)^{20}} \)
\( a_{n}=ar^{n-1}=\frac{5}{2}\left(\frac{1}{2}\right)^{n-1}=\frac{5}{2(2)^{n-1}}=\frac{5}{(2)^{n}} \)
Let a be the first term of the G.P.
\( {a}_{8}={ar}^{8-1}={ar}^{7}=192 {a}(2)^{7}=(2)^{6}(3) \)
\( ={a}=\frac{(2)^{6} \times 3}{(2)^{7}}=\frac{3}{2} \)
\( {a}_{12}=ar^{12-1}=\left(\frac{3}{2}\right)(2)^{11}=(3)(2)^{10}=3072 \)
\(a_{5}=a r^{5-1}=a r^{4}=p \ldots(1)\)
\(a_{8}=a r^{8-1}=a r^{7}=q \ldots(2)\)
\(a_{11}=a r^{11-1}=a r^{10}={s} \ldots(3)\)
dividing eq. (2) by (1), we obtain
\( \frac{a r^{7}}{a r^{4}}=\frac{q}{p} \)
\({r}^{3}=\frac{q}{p} \ldots(4)\)
dividing eq. (3) by (2), we obtain
\(\frac{a r^{10}}{a r^{7}}=\frac{s}{q} \ldots(5)\)
Equation the value of \( r^{3} \) obtained in (4) and (5), we obtain
\(\frac{q}{p}=\frac{s}{q}\)
\(={q}^{2}=p {s}\)
Thus, the given result is proved.
\(a=-3\)
It is known that, \(a_{n} = ar ^{n-1}\)
\(a_{4}=a r^{3}=(-3) r^{3}\)
\(a_{2}=a r^{1}=(-3) r\)
According to the given condition, \((-3) {r}^{3}=[(-3) {r}]^{2} \)
\(=-3 r^{3}=9 r^{2}=r=-3 a^{7}=a r^{7-1}=a\)
\(r^{6}=(-3)(-3)^{6}=(-3)^{7}=-2187\)
thus, the \( 7^{\text {th}} \) term of the G.P. is \(-2187 \).
5.
ncert exemplar class 11 maths || ncert solutions for class 11 maths chapter 9 || class 11 maths exercise 9.3 solutions || sequences and series class 11 ncert solutions || exercise 9.3 class 11 maths solutions || class 11 maths ncert solutions chapter 9 || class 11 ch 9 exercise 9.3 solutions || class 11 chapter 9 exercise 9.3 solution || ex 9.3 class 11 maths ncert solutions || Class 11 rd sharma exercise 9.3 solutions
Here, \( {a}=2 \) and \( {r}=\frac{(2 \sqrt{2}) }{ 2}=\sqrt{2} \)
Let, the \(n^{th}\) term of the given sequence be \(128 \).
\({a}_{{n}}={a} {r}^{{n}-1}\)
\(=(2)(\sqrt{2})^{n-1}=128\)
\(=(2)(2)^{\frac{n-1}{2}}=(2)^{7}\)
\(=(2)^{\frac{n-1}{2}+1}=(2)^{7}\)
\(=\frac{n-1}{2}+1=7\)
\(=\frac{n-1}{2}=6\)
\(={n}-1=12\)
\(={n}=13\)
Thus, the \( 13^{\text {th}} \) term of the given sequence is \(128 \).
\( {a}=\sqrt{3} \) and \( {r}=\frac{3}{\sqrt{3}}=\sqrt{3} \)
Let, the \(n^{th}\) term of the given sequence be \(729 \).
\({a}_{{n}}={ar}^{{n}-1}\)
\(={a} {r}^{{n}-1}=729\)
\(=(\sqrt{3})(\sqrt{3})^{n-1}=729\)
\(=(3)^{\frac{1}{2}}(3)^{\frac{n-1}{2}}=(3)^6\)
\(=(3)^{\frac{1}{2}+\frac{n-1}{2}}=(3)^6\)
\(=\frac{1}{2}+\frac{n-1}{2}=6\)
\(=\frac{1+n-1}{2}=6\)
\(={n}=12\)
Thus, the \( 12^{\text {th}} \) term of the given sequence is \(729 \).
Here, \( {a}=\frac{1}{3} \) and \( {r}=\frac{1}{9} \div \frac{1}{3}=\frac{1}{3} \)
Let, the \(n^{th}\) term of the given sequence be \( \frac{1}{19683} \).
\(a_{n}=a r^{n-1}\)
\(=ar^{n-1}=\frac{1}{19683}\)
\(=\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^{n-1}=\frac{1}{19683}\)
\(=\left(\frac{1}{3}\right)^{n}=\left(\frac{1}{3}\right)^{9}\)
\(=n=9\)
Thus, the \( 9^{\text {th}} \) term of the given sequence is \( \frac{1}{19683} \).
Common ratio \( =\frac{x}{\frac{-2}{7}}=\frac{-7 x}{2} \)
Also, common ratio \( =\frac{\frac{-7}{2}}{x}=\frac{-7}{2 x} \)
\(=\frac{-7 x}{2}=\frac{-7}{2 x}\)
\(=x^{2}=\frac{-2 \times 7}{-2 \times 7}=1\)
\(=x=\sqrt{1}\)
\(=x= \pm 1\)
Thus, for \( {x}= \pm 1 \), the given numbers will be in G.P.
Here \( {a}=0.15 \) and \( {r}=\frac{0.015}{0.15}=0.1 \)
\({S}_{{n}}=\frac{a\left(1-r^{n}\right)}{1-r}\)
\({S}_{20}=\frac{0.15\left[1-(0.1)^{20}\right]}{1-0.1}\)
\(=\frac{0.15}{0.9}[1-(0.1) ^{20}]\)
\(=\frac{15}{90}[1-(0.1) ^{20}]\)
\(=\frac{1}{6}[1-(0.1) ^{20}]\)
Here, \( a=\sqrt{7} \) and \( r=\frac{\sqrt{21}}{7}=\sqrt{3} \)
\({S}_{{n}}=\frac{a\left(1-r^{n}\right)}{1-r}\)
\({S}_{{n}}=\frac{\sqrt{7}\left[1-(\sqrt{3})^{n}\right]}{1-\sqrt{3}}\)
\({S}_{{n}}=\frac{\sqrt{7}\left[1-(\sqrt{3})^{n}\right]}{1-\sqrt{3}} \times \frac{1+\sqrt{3}}{1+\sqrt{3}}\)
\({S}_{{n}}=\frac{\sqrt{7}(\sqrt{3}+1)\left[1-(\sqrt{3})^{n}\right]}{1-3}\)
\({S}_{{n}}=\frac{-\sqrt{7}(\sqrt{3}+1)\left[1-(\sqrt{3})^{n}\right]}{2}\)
Here, first term \( =a_{1}=1 \)
Common ratio \( ={r}=-{a} \)
\({S}_{{n}}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}\)
\({S}_{{n}}=\frac{1\left[1-(-a)^{n}\right]}{1-(-a)}=\frac{\left[1-(-a)^{n}\right]}{1+a}\)
Here, \( a=x^{3} \) and \( r=x^{2} \)
\({S}_{{n}}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{x^{3}\left[1-\left(x^{2}\right)^{n}\right]}{1-x^{2}}=\frac{x^{3}\left(1-x^{2 n}\right)}{1-x^{2}}\)
\(\sum_{k=1}^{11} 3^{k}=31+32+33+\ldots+311\)
The terms of the sequence \( 3,3^{2}, 3^{3} \ldots \) Forms a G.P.
\({S}_{{n}}=\frac{a\left(r^{n}-1\right)}{r-1}\)
\({S}_{{n}}=\frac{3\left[(3)^{11}-1\right]}{3-1}\)
\({S}_{{n}}=\frac{3}{2}\left(3^{11}-1\right)\)
\(=\sum_{k=1}^{11} 3^{k}=\frac{3}{2}\left(3^{11}-1\right)\)
Substituting this value in eq. (1), we obtain
\(\sum_{k=1}^{11}\left(2+3^{k}\right)=22+\frac{3}{2}\left(3^{11}-1\right)\)
\(\frac{a}{r}+{a}+{ar}=\frac{39}{10} \ldots(1)\)
\(\left(\frac{a}{r}\right)(a)(a r)=1\ldots(2)\)
From (2), we obtain \( a^{3} =1 \)
\( ={a}=1 \) (considering real roots only)
Substituting \( {a}=1 \) in eq. (1), we obtain
\(\frac{1}{r}+1+r=\frac{39}{10}\)
\(=1+r+r^{2}=\frac{39}{10} r\)
\(=10+10 r+10 r^{2}-39 r=0\)
\(=10 r^{2}-29 r+10=0\)
\(=10 r^{2}-25 r-4 r+10=0\)
\(=5 r(2 r-5)-2(2 r-5)=0\)
\(=(2 r-5)(5 r-2)=0\)
\(=r=\frac{2}{5} \text { or } \frac{5}{2}\)
Thus, the three terms if G.P. are \( \frac{5}{2}, 1 \) and \( \frac{2}{5} \)
ncert exemplar class 11 maths || ncert solutions for class 11 maths chapter 9 || class 11 maths exercise 9.3 solutions || sequences and series class 11 ncert solutions || exercise 9.3 class 11 maths solutions || class 11 maths ncert solutions chapter 9 || class 11 ch 9 exercise 9.3 solutions || class 11 chapter 9 exercise 9.3 solution || ex 9.3 class 11 maths ncert solutions || Class 11 rd sharma exercise 9.3 solutions
Let \( n \) terms of this G.P. be required to obtain the sum as \(120 \).
\({S}_{{n}}=\frac{a\left(1-r^{n}\right)}{1-r}\)
Here, \( {a}=3 \) and \( {r}=3 \)
\(S_{n}=120=\frac{3\left(3^{n}-1\right)}{3-1}\)
\(=120=\frac{3\left(3^{n}-1\right)}{2}\)
\(=\frac{120 \times 2}{3}=3 n-1\)
\(=3 n-1=80\)
\(=3 n=81\)
\(=3 n=34\)
\(=n=4\)
Thus, four terms of the given G.P. are required to obtain the sum as \(120 \).
\(a+a r+a r^{2}=16\text{ and }a r^{3}+a r^{4}+a r^{5}=128\)
\(=a\left(1+r+r^{2}\right)=16 \ldots (1) \)
\(=a r^{3}\left(1+r+r^{2}\right)=128 \ldots(2)\)
Dividing eq. (2) by (1), we obtain
\(\frac{a r^{3}\left(1+r+r^{2}\right)}{a\left(1+r+r^{2}\right)}=\frac{128}{16}\)
\(=r^{3}=8\)
\(={r}=2\)
Substituting \( {r}=2 \) in (1), we obtain \( a (1+2+4)=16 \)
\(={a}(7)=16\)
\(={a}=\frac{16}{7}\)
\({S}_{{n}}=\frac{a\left(r^{n}-1\right)}{r-1}\)
\({S}_{{n}}=\frac{16}{7} \frac{\left(2^{n}-1\right)}{2-1}=\frac{16}{7}\left(2^{n}-1\right)\)
Let, \( r \) be the common ratio of the G.P. it is known that,
\(=a_{n}=a r n^{-1}\)
\(=a_{7}=a r^{7-1}=(729) r^{6}\)
\(=64=729 r^{6}\)
\(=r^{6}=\frac{64}{729}\)
\(=r^{6}=\left(\frac{2}{3}\right)^{6}\)
\(=r=\frac{2}{3}\)
Also, it is known that,
\({S}_{{n}}=\frac{a\left(1-r^{n}\right)}{1-r}\)
\({S}_{7}=\frac{729\left[1-\left(\frac{2}{3}\right)^{7}\right]}{1-\frac{2}{3}}\)
\(=3 \times 729\left[1-\left(\frac{2}{3}\right)^{7}\right]\)
\(=(3)^{7}\left[\frac{\left[(3)^{7}-(2)^{7}\right.}{(3)^{7}}\right]\)
\(=(3)^{7}-(2)^{7}\)
\(=2187-128\)
\(=2059\)
According to the given condition,
\({S}_{2}=-4=\frac{a\left(1-r^{2}\right)}{1-r} \ldots(1)\)
\(={a}_{5}=4 \times {a}^{3}\)
\(={a} {r}^{4}=4 {ar}^{2}={r}^{2}=4\)
\(={r}= \pm 2\)
From (1), we obtain
\(-4=\frac{a\left[1-(2)^{2}\right]}{1-2} \text { for } {r}=2\)
\(=-4=\frac{a(1-4)}{-1}\)
\(=-4={a}(3)\)
\(={a}=\frac{-4}{3}\)
Also, \( -4=\frac{a\left[1-(-2)^{2}\right]}{1-(-2)} \) for \( {r}=-2 \)
\(=-4=\frac{a(1-4)}{1+2}\)
\(=-4=\frac{a(-3)}{3}\)
\(={a}=4\)
Thus, the required G.P. is \( \frac{-4}{3}, \frac{-8}{3}, \frac{-16}{3}, \ldots \) or \( 4,-8,16,-32, \ldots \)
According to the given condition,
\(=a_{4}=a r^{3}=x \ldots(1)\)
\(=a_{10}=a r^{9}=y \ldots(2)\)
\(=a_{16}=a r^{15}=z \ldots(3)\)
Dividing (2) by (1), we obtain
\(\frac{y}{x}=\frac{a r^{9}}{a r^{3}}=\frac{y}{x}={r}^{6}\)
Dividing (3) by (2), we obtain
\(\frac{z}{y}=\frac{a r^{15}}{a r^{9}}=\frac{z}{y}={r}^{6}\)
\(=\frac{y}{x}=\frac{z}{y}\)
Thus, \( x, y, z \) is in G.P.
This sequence is not a G.P. however, it can be changed to G.P.by writing the terms as
\({S}_{{n}}=8+88+888+8888+\ldots .+{n} \text { terms }\)
\(=\frac{8}{9}[9+99+999+9999+\ldots \text { to n terms }]\)
\(=\frac{8}{9}\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\left(10^{4}-1\right)+\ldots \text { to n terms}\right]\)
\(=\frac{8}{9}\left[\left(10+10^{2}+\ldots . {n} \text { terms}\right)-(1+1+1+{n} \text { terms})\right]\)
\(=\frac{8}{9}\left(\frac{10\left(10^{n}-1\right)}{10-1}-n\right)\)
\(=\frac{8}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]\)
\(=\frac{80}{81}\left(10^{n}-1\right)-\frac{8}{9} n\)
\(=64\left[4+2+1+\frac{1}{2}+\frac{1}{2^{2}}\right]\)
Here, \( 4,2,1, \frac{1}{2}, \frac{1}{2^{2}} \) is a G.P.
First term, \( {a}=4 \)
Common ratio \( {r}=\frac{1}{2} \)
It is known that,
\({S}_{{n}}=\frac{a\left(1-r^{n}\right)}{1-r}\)
\({S}_{5}=\frac{4\left[1-\left(\frac{1}{2}\right)^{5}\right]}{1-\frac{1}{2}}=\frac{4\left[1-\frac{1}{32}\right]}{\frac{1}{2}}=8\left(\frac{32-1}{32}\right)=\frac{31}{4}\)
Required sum \( =64 \times \frac{31}{4}=(16)(31)=496 \)
\(\frac{\text { second term }}{\text { first term }}=\frac{a r A R}{a A}={Rr}\)
\(\frac{\text { third term }}{\text {second term }}=\frac{a r^{2} A R^{2}}{a r A R}={Rr}\)
Thus, the above sequence forms a G.P. and the common ratio is \( r {R} \).
\(=a_{1}=a, a_{2}=a r, a_{3}=a r^{2}, a_{4}=a r^{3}\)
By the given condition
\(=a_{3}=a_{1}+9=a r^{2}=a+9 \ldots(1)\)
\(=a_{2}=a_{4}+18=a r=a r^{3}+18 \ldots(2)\)
From eq. (1) and (2), we obtain
\(=a\left(r^{2}-1\right)=9 \ldots(3)\)
\(=ar\left(1-r^{2}\right)=18 \ldots(4)\)
Dividing (4) by (3), we obtain
\(\frac{a r\left(1-r^{2}\right)}{a\left(r^{2}-1\right)}=\frac{18}{9}\)
\(=-r=2\)
\(=r=-2\)
Substituting the value of \( r \) in (1), we obtain
\(4 a=a+9\)
\(=3 a=9\)
\(=a=3\)
Thus, the first four numbers of the G.P. are \( 3,3(-2), 3(-2)^{2} \) and \( 3(-2)^{3} \) i.e., \( 3,-6,12 \), and \(-24\) .
ncert exemplar class 11 maths || ncert solutions for class 11 maths chapter 9 || class 11 maths exercise 9.3 solutions || sequences and series class 11 ncert solutions || exercise 9.3 class 11 maths solutions || class 11 maths ncert solutions chapter 9 || class 11 ch 9 exercise 9.3 solutions || class 11 chapter 9 exercise 9.3 solution || ex 9.3 class 11 maths ncert solutions || Class 11 rd sharma exercise 9.3 solutions
According to the given information,
\({AR}^{{p}-1}={a}\)
\({AR}^{{q}-1}={b}\)
\({AR}^{{r}-1}={c}\)
\(=a^{q-r} \cdot b^{r-p} \cdot c^{p-q}\)
\(=A^{q-r} \times R^{(p-1)(q-r)} \times A^{r-p} \times R^{(q-1)(r-p)} \times A^{p-q} \times R^{(r-1)(p-q)}\)
\(=A^{q-r-r-p+p-q} \times R^{(p r-p r-q+r)+(r q-r+p-p q)+(p r-p-q r+q)}\)
\(=A^{0} \times R^{0}\)
\(=1\)
Thus, the given result is proved.
Therefore, the G.P. is \(a, a {r}, {ar}^{2}, {ar}^{3} \ldots {ar}^{{n}-1} \), where \(r\) is common ratio
\(={b}={ar}^{{n}-1} \quad\ldots\ldots(1)\)
\(={p}=\text { product of } {n} \text { terms }\)
\(=({a})(a {r})\left({ar}^{2}\right) \ldots\left({ar}^{{n}-1}\right)\)
\(=({a} \times {a} \times {a})\left({r} \times {r}^{2} \times \ldots{r}^{{n}-1}\right)\)
\(=an. r^{1+2+\ldots({n}-1)}\quad \ldots\ldots(2)\)
Here, \( 1,2, \ldots({n}-1) \) is an A.P.
\(=1+2+\ldots+({n}-1)\)
\(=\frac{n-1}{2}[2+(n-1-1) \times 1]\)
\(=\frac{n-1}{2}[2+n-2]\)
\(=\frac{n(n-1)}{2}\)
\({P}={a}^{{n}} r^{\frac{n(n-1)}{2}}\)
\({P}^{2}={a}^{2 {n}} r^{n(n-1)}\)
\(=\left[a^{2} r^{(n-1)}\right]^{n}\)
\(=\left[a \times a r^{n-1}\right]^{n}\)
\(=({ab})^{{n}} \text { [using eq. (1)] }\)
Thus, the given result id proved.
Sum of first n terms \( =\frac{a\left(1-r^{n}\right)}{1-r} \)
Since there are n terms from \( (n+1)^{\text {th}} \) to \( (2 n)^{\text {th}} \) term,
Sum of terms from \( (n+1)^{\text {th}} \) to \( (2 n)^{\text {th}} \) term
\({S}_{{n}}=\frac{a_{n+1}\left(1-r^{n}\right)}{1-r}\)
Thus, required ratio \( =\frac{a\left(1-r^{n}\right)}{1-r} \times \frac{1-r}{a r^{n}\left(1-r^{n}\right)}=\frac{1}{r^{n}} \)
Thus, the ratio of the sum of first n terms of a G.P. to the sum of terms from \( (n+1)^{\text {th}} \) to \( (2 n)^{\text {th}} \) terms is \( \frac{1}{r^{n}} \)
\(=b {c}={ad} \ldots(1)\)
\(={b} ^{2}={ac} \ldots(2)\)
\(={c} ^{2}=b {d} \ldots(3)\)
It has to be proved that,
\(\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c-c d)^{2}\)
R.H.S.
\(=(a b+b c+c d)^{2}\)
\(=(a b+a d+c d)^{2}\quad[\text {using (1)}]\)
\(=[a b+d(a+c)]^{2}\)
\(=a^{2} b^{2}+2 a b d(a+c)+d^{2}(a+c)^{2}\)
\(=a^{2} b^{2}+2 a^{2} b d+2 a c b d+d^{2}\left(a^{2}+2 a c+c^{2}\right)\)
\(=a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}+d^{2} a^{2}+2 d^{2} b^{2}+d^{2} c^{2}\quad[\text {using (1) and (2)}]\)
\(=a^{2} b^{2}+a^{2} c^{2}+a^{2} c^{2}+b^{2} c^{2}+b^{2} c^{2}+d^{2} a^{2}+d^{2} b^{2}+d^{2} b^{2}+d^{2} c^{2}\)
\(=a^{2} b^{2}+a^{2} c^{2}+a^{2} d^{2}+b^{2} \times b^{2}+b^{2} c^{2}+b^{2} d^{2}+c^{2} d^{2}+c^{2} \times c^{2}+c^{2} d^{2}\)
[using (2) and (3) and rearranging terms]
\(=a^{2}\left(b^{2}+c^{2}+d^{2}\right)+b^{2}\left(b^{2}+c^{2}+d^{2}\right)+c^{2}\left(b^{2}+c^{2}+d^{2}\right)\)
\(=\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=\text { L.H.S. }\)
L.H.S. \( = \) R.H.S.
\(=\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c-c d)^{2}\)
Let, a be the first term and \( r \) be the common ratio of the G.P.
\(81=(3)(r)^{3}\)
\(=r^{3}=27\)
\(=r=3 \text { (taken real roots only) }\)
For \( r=3 \)
\({G}_{1}={ar}=(3)(3)=9\)
\({G}_{2}={a} {r}^{2}=(3)(3)^{2}=27\)
Thus, the required two numbers are \(9\) and \(27 \).
By the given condition: \( \frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=\sqrt{a b} \)
Squaring both sides, we obtain
\(=\frac{\left(a^{n+1}+b^{n+1}\right)^{2}}{\left(a^{n}+b^{n}\right)^{2}}=a b\)
\(={a}^{2 {n}+2}+2 {a}^{{n}+1} b^{{n}+1}+{b}^{2 {n}+2}=({ab})\left({a}^{2 {n}}+2 {a}^{{n}} b^{{n}}+b^{2 {n}}\right)\)
\(={a}^{2 {n}+2}+2 {a}^{{n}+1} {b}^{{n}+1}+{b}^{2 {n}+2}={a}^{2 {n}+1} {b}+2 {a}^{{n}+1} b^{{n}+1}+{ab}^{2 {n}+1}\)
\(={a}^{2 {n}+2}+{b}^{2 {n}+2}={a}^{2 {n}+1} {b}+{a} b^{2 {n}+1}\)
\(={a}^{2 {n}+2}-{a}^{2 {n}+1} {b}={ab}^{2 {n}+1}-{b}^{2 {n}+2}\)
\(={a}^{2 {n}+1}({a}-{b})={b}^{2 {n}+1}({a}-{b})\)
\(=\left(\frac{a}{b}\right)^{2 n+1}=1=\left(\frac{a}{b}\right)^{0}\)
\(=2 {n}+1=0\)
\(={n}=\frac{-1}{2}\)
\(\text {G.M. }=\sqrt{a b}\)
According to the given condition,
\(=a+b=6 \sqrt{a b} \ldots(1)\)
\(=(a+b)^{2}=36(a b)\)
Also, \( ({a}-{b})^{2}=({a}+{b})^{2}-4 {ab}=36 {ab}-4 {ab}=32 {ab} \)
\(=a-b=\sqrt{32} \sqrt{a b}\)
\(=4 \sqrt{2} \sqrt{a b} \ldots (2) \)
Adding (1) and (2), we obtain
\(2 a=(6+4 \sqrt{2}) \sqrt{a b}\)
\(=a=(3+2 \sqrt{2}) \sqrt{a b}\)
Substituting the value of a in (1), we obtain
\(={b}=6 \sqrt{a b}-(3+2 \sqrt{2}) \sqrt{a b}\)
\(={b}=(3-2 \sqrt{2}) \sqrt{a b}\)
\(=\frac{a}{b}=\frac{(3+2 \sqrt{2}) \sqrt{a b}}{(3-2 \sqrt{2}) \sqrt{a b}}=\frac{3+2 \sqrt{2}}{3-2 \sqrt{2}}\)
Thus, the required ratio is \( (3+2 \sqrt{2}):(3-2 \sqrt{2}) \)
Let, these two positive numbers be \(a\) and \(b \).
\(=\text {A.M.}={A}=\frac{a+b}{2} \ldots(1)\)
\(\text {G.M.}={G}=\sqrt{a b} \ldots(2)\)
From (1) and (2), we obtain
\(=a+b=2 A \ldots(3)\)
\(=a b=G^{2} \ldots (4)\)
Substituting the value of \( a \) and \( b \) from (3) and (4) in the identity
\( (a-b)^{2}=(a+b)^{2}-4 a b \). We obtain
\( (a-b)^{2}=4 A^{2}-4 G^{2}=4\left(A^{2}-G^{2}\right) \)
\( ({a}-{b})^{2}=4({A}+{G})({A}-{G}) \)
\( ({a}-{b})=2 \sqrt{(A+G)(A-G)}\ldots (5) \)
From (3) and (5), we obtain
\(2 {a}=2 {A}+2 \sqrt{(A+G)(A-G)}\)
\(={a}={A}+\sqrt{(A+G)(A-G)}\)
Substituting the value of a in (3), we obtain
\(={b}=2 {A}-{A}-\sqrt{(A+G)(A-G)}={A}-\sqrt{(A+G)(A-G)}\)
Thus, the two numbers are \( {A} \pm \sqrt{(A+G)(A-G)} \)
Here, \( {a}=30 \) and \( {r}=2 \)
\(={a}_{3}=ar^{2}=(30)(2)^{2}=120\)
Therefore, the numbers of bacteria at the end of \( 2^{\text {nd}} \) hour will be \(120 \).
\(={a}_{5}={ar}^{4}=(30)(2)^{4}=480\)
The number of bacteria at the end of \( 4^{\text {th}} \) hour will be \(480 \).
\(={a}_{{n}+1}={a} r^{{n}}=(30) 2^{{n}}\)
Thus, numbers of bacteria at the end of \( {n}^{\text {th}} \) hour will be \( 30(2)^{{n}} \)
At the end of first year, amount \( =₹ 500\left(1+\frac{1}{10}\right)= \) rs \(500(1.1)\)
At the end of \( 2^{\text {nd}} \) year, amount \( =₹ 500(1.1)(1.1) \)
At the end of \( 3^{\text {rd}} \) year, amount \( =₹ 500(1.1)(1.1)(1.1) \) and so on.
Amount at the end of 10 years \( =₹ 500(1.1)(1.1) \ldots\) \((10 \text{ times})= \text{Rs }500 (1.1)^{10} \)
According to the given condition,
\(\text {A.M.}=\frac{a+b}{2}=8={a}+{b}=16 \ldots(1)\)
\(\text {G.M.}=\sqrt{a b}=5={ab}=25 \ldots (2)\)
The quadratic equation is given by,
\( x^{2}-x \) (sum of roots) \(+\) (product of roots) \( =0 \)
\(x^{2}-x(a+b)+(a b)=0\)
\( x^{2}-16 x+25=0\quad \) [using (1) and (2)]
thus, the required quadratic equation is \( x^{2}-16 x+25=0 \)
ncert exemplar class 11 maths || ncert solutions for class 11 maths chapter 9 || class 11 maths exercise 9.3 solutions || sequences and series class 11 ncert solutions || exercise 9.3 class 11 maths solutions || class 11 maths ncert solutions chapter 9 || class 11 ch 9 exercise 9.3 solutions || class 11 chapter 9 exercise 9.3 solution || ex 9.3 class 11 maths ncert solutions || Class 11 rd sharma exercise 9.3 solutions
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
 
								
