Ex 9.3 Class 11 Maths Ncert Solutions

Ex 9.3 class 11 maths ncert solutions | Class 11 rd sharma exercise 9.3 solutions | class 11 maths exercise 9.3 solutions | exercise 9.3 class 11 maths solutions | class 11 ch 9 exercise 9.3 solutions | class 11 chapter 9 exercise 9.3 solution | class 11 maths ncert solutions chapter 9 | ncert solutions for class 11 maths chapter 9 | ncert exemplar class 11 maths | sequences and series class 11 ncert solutions

Looking for Ex 9.3 Class 11 Maths NCERT Solutions? You’re in the right place! This section provides detailed, step-by-step solutions for all questions from Exercise 9.3 of Chapter 9 – Sequences and Series. These solutions follow the latest NCERT syllabus and focus on Geometric Progressions (GP) — including finding the nth term, sum of n terms, and special properties of GP. Whether you’re working through Class 11 Ch 9 Exercise 9.3, checking your answers with the RD Sharma Exercise 9.3 Solutions, or referring to the NCERT Exemplar Class 11 Maths, these explanations will help you understand and apply GP concepts confidently. View or download the complete Class 11 Maths NCERT Solutions Chapter 9 and build a strong foundation in Sequences and Series Class 11 today!

ex 9.3 class 11 maths ncert solutions
ncert exemplar class 11 maths || ncert solutions for class 11 maths chapter 9 || class 11 maths exercise 9.3 solutions || sequences and series class 11 ncert solutions || exercise 9.3 class 11 maths solutions || class 11 maths ncert solutions chapter 9 || class 11 ch 9 exercise 9.3 solutions || class 11 chapter 9 exercise 9.3 solution || ex 9.3 class 11 maths ncert solutions || Class 11 rd sharma exercise 9.3 solutions
Download the Math Ninja App Now

Exercise 9.3

1. Find the \( 20^{\text {th}} \) and \( {n}^{\text {th}} \) terms of the G.P. \( \frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots \)
Answer
The given G.P. is \( \frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots \)
Here, \( {a}= \) first term \( =\frac{5}{2} \)
\( r= \) common ratio \( =\frac{\frac{5}{4}}{\frac{5}{2}}=\frac{1}{2} \)
\( {a}_{20}=ar^{20-1}=\frac{5}{2}\left(\frac{1}{2}\right)^{19}=\frac{5}{2(2)^{19}}=\frac{5}{(2)^{20}} \)
\( a_{n}=ar^{n-1}=\frac{5}{2}\left(\frac{1}{2}\right)^{n-1}=\frac{5}{2(2)^{n-1}}=\frac{5}{(2)^{n}} \)
2. Find the \( 12^{\text {th}} \) term of a G.P. whose \( 8^{\text {th}} \) term is 192 and the common ratio is 2.
Answer
Common ratio, \( r=0 \)
Let a be the first term of the G.P.
\( {a}_{8}={ar}^{8-1}={ar}^{7}=192 {a}(2)^{7}=(2)^{6}(3) \)
\( ={a}=\frac{(2)^{6} \times 3}{(2)^{7}}=\frac{3}{2} \)
\( {a}_{12}=ar^{12-1}=\left(\frac{3}{2}\right)(2)^{11}=(3)(2)^{10}=3072 \)
3. The \( 5^{\text {th}}, 8^{\text {th}} \) and \( 11^{\text {th}} \) terms of a G.P. are \( {p}, {q} \) and \(s \), respectively. Show that \( {q}^{2}={ps} \).
Answer
Let a be the first term and \( r \) be the common ratio of the G.P. according to the given condition,
\(a_{5}=a r^{5-1}=a r^{4}=p \ldots(1)\)
\(a_{8}=a r^{8-1}=a r^{7}=q \ldots(2)\)
\(a_{11}=a r^{11-1}=a r^{10}={s} \ldots(3)\)
dividing eq. (2) by (1), we obtain
\( \frac{a r^{7}}{a r^{4}}=\frac{q}{p} \)
\({r}^{3}=\frac{q}{p} \ldots(4)\)
dividing eq. (3) by (2), we obtain
\(\frac{a r^{10}}{a r^{7}}=\frac{s}{q} \ldots(5)\)
Equation the value of \( r^{3} \) obtained in (4) and (5), we obtain
\(\frac{q}{p}=\frac{s}{q}\)
\(={q}^{2}=p {s}\)
Thus, the given result is proved.
4. The \( 4^{\text {th}} \) term of a G.P. is square of its second term, and the first term is \(-3 \). Determine its \( 7^{\text {th}} \) term.
Answer
Let, a be the first term and \( r \) be the common ratio of the G.P.
\(a=-3\)
It is known that, \(a_{n} = ar ^{n-1}\)
\(a_{4}=a r^{3}=(-3) r^{3}\)
\(a_{2}=a r^{1}=(-3) r\)
According to the given condition, \((-3) {r}^{3}=[(-3) {r}]^{2} \)
\(=-3 r^{3}=9 r^{2}=r=-3 a^{7}=a r^{7-1}=a\)
\(r^{6}=(-3)(-3)^{6}=(-3)^{7}=-2187\)
thus, the \( 7^{\text {th}} \) term of the G.P. is \(-2187 \).

5.

ncert exemplar class 11 maths || ncert solutions for class 11 maths chapter 9 || class 11 maths exercise 9.3 solutions || sequences and series class 11 ncert solutions || exercise 9.3 class 11 maths solutions || class 11 maths ncert solutions chapter 9 || class 11 ch 9 exercise 9.3 solutions || class 11 chapter 9 exercise 9.3 solution || ex 9.3 class 11 maths ncert solutions || Class 11 rd sharma exercise 9.3 solutions
Download the Math Ninja App Now
(a) Which term of the following sequences: \( 2,2 \sqrt{2}, 4, \ldots \) is \(128 \)?
Answer
the given sequence is \( 2,2 \sqrt{2}, 4, \ldots \) is \(128 \) ?
Here, \( {a}=2 \) and \( {r}=\frac{(2 \sqrt{2}) }{ 2}=\sqrt{2} \)
Let, the \(n^{th}\) term of the given sequence be \(128 \).
\({a}_{{n}}={a} {r}^{{n}-1}\)
\(=(2)(\sqrt{2})^{n-1}=128\)
\(=(2)(2)^{\frac{n-1}{2}}=(2)^{7}\)
\(=(2)^{\frac{n-1}{2}+1}=(2)^{7}\)
\(=\frac{n-1}{2}+1=7\)
\(=\frac{n-1}{2}=6\)
\(={n}-1=12\)
\(={n}=13\)
Thus, the \( 13^{\text {th}} \) term of the given sequence is \(128 \).
(b) Which term of the following sequences: \( \sqrt{3}, 3,3 \sqrt{3}, \ldots \) is \(729 \)?
Answer
the given sequence is \( \sqrt{3}, 3,3 \sqrt{3}, \ldots \)
\( {a}=\sqrt{3} \) and \( {r}=\frac{3}{\sqrt{3}}=\sqrt{3} \)
Let, the \(n^{th}\) term of the given sequence be \(729 \).
\({a}_{{n}}={ar}^{{n}-1}\)
\(={a} {r}^{{n}-1}=729\)
\(=(\sqrt{3})(\sqrt{3})^{n-1}=729\)
\(=(3)^{\frac{1}{2}}(3)^{\frac{n-1}{2}}=(3)^6\)
\(=(3)^{\frac{1}{2}+\frac{n-1}{2}}=(3)^6\)
\(=\frac{1}{2}+\frac{n-1}{2}=6\)
\(=\frac{1+n-1}{2}=6\)
\(={n}=12\)
Thus, the \( 12^{\text {th}} \) term of the given sequence is \(729 \).
(c) Which term of the following sequences: \( \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots\text{ is }\frac{1}{19683} \) ?
Answer
the given sequence is \( \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots \)
Here, \( {a}=\frac{1}{3} \) and \( {r}=\frac{1}{9} \div \frac{1}{3}=\frac{1}{3} \)
Let, the \(n^{th}\) term of the given sequence be \( \frac{1}{19683} \).
\(a_{n}=a r^{n-1}\)
\(=ar^{n-1}=\frac{1}{19683}\)
\(=\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^{n-1}=\frac{1}{19683}\)
\(=\left(\frac{1}{3}\right)^{n}=\left(\frac{1}{3}\right)^{9}\)
\(=n=9\)
Thus, the \( 9^{\text {th}} \) term of the given sequence is \( \frac{1}{19683} \).
6. For what values of \( x \), the numbers \( \frac{-2}{7}, x, \frac{-7}{2} \) are in G.P?
Answer
The given numbers are \( \frac{-2}{7}, x, \frac{-7}{2} \)
Common ratio \( =\frac{x}{\frac{-2}{7}}=\frac{-7 x}{2} \)
Also, common ratio \( =\frac{\frac{-7}{2}}{x}=\frac{-7}{2 x} \)
\(=\frac{-7 x}{2}=\frac{-7}{2 x}\)
\(=x^{2}=\frac{-2 \times 7}{-2 \times 7}=1\)
\(=x=\sqrt{1}\)
\(=x= \pm 1\)
Thus, for \( {x}= \pm 1 \), the given numbers will be in G.P.
7. Find the sum to 20 terms in the geometric progression \(0.15 , 0.015 , 0.0015 \ldots\)
Answer
The given G.P. is \( 0.15,0.015,0.00015, \ldots \)
Here \( {a}=0.15 \) and \( {r}=\frac{0.015}{0.15}=0.1 \)
\({S}_{{n}}=\frac{a\left(1-r^{n}\right)}{1-r}\)
\({S}_{20}=\frac{0.15\left[1-(0.1)^{20}\right]}{1-0.1}\)
\(=\frac{0.15}{0.9}[1-(0.1) ^{20}]\)
\(=\frac{15}{90}[1-(0.1) ^{20}]\)
\(=\frac{1}{6}[1-(0.1) ^{20}]\)
8. Find the sum to n terms in the geometric progression \( \sqrt{7}, \sqrt{21}, 3 \sqrt{7}, \ldots \)
Answer
The given G.P. is \( \sqrt{7}, \sqrt{21}, 3 \sqrt{7}, \ldots \)
Here, \( a=\sqrt{7} \) and \( r=\frac{\sqrt{21}}{7}=\sqrt{3} \)
\({S}_{{n}}=\frac{a\left(1-r^{n}\right)}{1-r}\)
\({S}_{{n}}=\frac{\sqrt{7}\left[1-(\sqrt{3})^{n}\right]}{1-\sqrt{3}}\)
\({S}_{{n}}=\frac{\sqrt{7}\left[1-(\sqrt{3})^{n}\right]}{1-\sqrt{3}} \times \frac{1+\sqrt{3}}{1+\sqrt{3}}\)
\({S}_{{n}}=\frac{\sqrt{7}(\sqrt{3}+1)\left[1-(\sqrt{3})^{n}\right]}{1-3}\)
\({S}_{{n}}=\frac{-\sqrt{7}(\sqrt{3}+1)\left[1-(\sqrt{3})^{n}\right]}{2}\)
9. Find the sum to n terms in the geometric progression \( 1, -a,a^{2},-a^{3} \ldots( \text{if } a \neq-1) \)
Answer
The given G.P. is \( 1,-a, a^{2},-a^{3}, \ldots \)
Here, first term \( =a_{1}=1 \)
Common ratio \( ={r}=-{a} \)
\({S}_{{n}}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}\)
\({S}_{{n}}=\frac{1\left[1-(-a)^{n}\right]}{1-(-a)}=\frac{\left[1-(-a)^{n}\right]}{1+a}\)
10. Find the sum to \( n \) terms in the geometric progression \( x^{3}, x^{5} ,x^{7}, \ldots( \text{if }x \neq \pm 1) \)
Answer
The given G.P. is \( x^{3}, x^{5}, x^{7}, \ldots \)
Here, \( a=x^{3} \) and \( r=x^{2} \)
\({S}_{{n}}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{x^{3}\left[1-\left(x^{2}\right)^{n}\right]}{1-x^{2}}=\frac{x^{3}\left(1-x^{2 n}\right)}{1-x^{2}}\)
11. Evaluate \( \sum_{k=1}^{11}\left(2+3^{k}\right) \)
Answer
\(\sum_{k=1}^{11}\left(2+3^{k}\right)=\sum_{k=1}^{11}(2)+\sum_{k=1}^{11} 3^{k}=2(11)\) \(+\sum_{k=1}^{11} 3^{k}=22+\sum_{k=1}^{11} 3^{k} \ldots(1)\)
\(\sum_{k=1}^{11} 3^{k}=31+32+33+\ldots+311\)
The terms of the sequence \( 3,3^{2}, 3^{3} \ldots \) Forms a G.P.
\({S}_{{n}}=\frac{a\left(r^{n}-1\right)}{r-1}\)
\({S}_{{n}}=\frac{3\left[(3)^{11}-1\right]}{3-1}\)
\({S}_{{n}}=\frac{3}{2}\left(3^{11}-1\right)\)
\(=\sum_{k=1}^{11} 3^{k}=\frac{3}{2}\left(3^{11}-1\right)\)
Substituting this value in eq. (1), we obtain
\(\sum_{k=1}^{11}\left(2+3^{k}\right)=22+\frac{3}{2}\left(3^{11}-1\right)\)
12. The sum of first three terms of a G.P. is \( \frac{39}{10} \) and their product is \(1 \). Find the common ratio and the terms.
Answer
Let, \( \frac{a}{r} , a, ar\) be the first three terms of the G.P.
\(\frac{a}{r}+{a}+{ar}=\frac{39}{10} \ldots(1)\)
\(\left(\frac{a}{r}\right)(a)(a r)=1\ldots(2)\)
From (2), we obtain \( a^{3} =1 \)
\( ={a}=1 \) (considering real roots only)
Substituting \( {a}=1 \) in eq. (1), we obtain
\(\frac{1}{r}+1+r=\frac{39}{10}\)
\(=1+r+r^{2}=\frac{39}{10} r\)
\(=10+10 r+10 r^{2}-39 r=0\)
\(=10 r^{2}-29 r+10=0\)
\(=10 r^{2}-25 r-4 r+10=0\)
\(=5 r(2 r-5)-2(2 r-5)=0\)
\(=(2 r-5)(5 r-2)=0\)
\(=r=\frac{2}{5} \text { or } \frac{5}{2}\)
Thus, the three terms if G.P. are \( \frac{5}{2}, 1 \) and \( \frac{2}{5} \)
ncert exemplar class 11 maths || ncert solutions for class 11 maths chapter 9 || class 11 maths exercise 9.3 solutions || sequences and series class 11 ncert solutions || exercise 9.3 class 11 maths solutions || class 11 maths ncert solutions chapter 9 || class 11 ch 9 exercise 9.3 solutions || class 11 chapter 9 exercise 9.3 solution || ex 9.3 class 11 maths ncert solutions || Class 11 rd sharma exercise 9.3 solutions
Download the Math Ninja App Now
13. How many terms of G.P. \( 3,3^{2}, 3^{3} \ldots \) are needed to give the sum \(120 \)?
Answer
The given G.P. is \( 3,3^{2}, 3^{3} \ldots \)
Let \( n \) terms of this G.P. be required to obtain the sum as \(120 \).
\({S}_{{n}}=\frac{a\left(1-r^{n}\right)}{1-r}\)
Here, \( {a}=3 \) and \( {r}=3 \)
\(S_{n}=120=\frac{3\left(3^{n}-1\right)}{3-1}\)
\(=120=\frac{3\left(3^{n}-1\right)}{2}\)
\(=\frac{120 \times 2}{3}=3 n-1\)
\(=3 n-1=80\)
\(=3 n=81\)
\(=3 n=34\)
\(=n=4\)
Thus, four terms of the given G.P. are required to obtain the sum as \(120 \).
14. The sum of first three terms of a G.P. is 16 and the sum of the next three terms are 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
Answer
Let, the G.P. be \( a , a {r}, {ar}^{2}, {ar}^{3}, \ldots \) According to the given condition,
\(a+a r+a r^{2}=16\text{ and }a r^{3}+a r^{4}+a r^{5}=128\)
\(=a\left(1+r+r^{2}\right)=16 \ldots (1) \)
\(=a r^{3}\left(1+r+r^{2}\right)=128 \ldots(2)\)
Dividing eq. (2) by (1), we obtain
\(\frac{a r^{3}\left(1+r+r^{2}\right)}{a\left(1+r+r^{2}\right)}=\frac{128}{16}\)
\(=r^{3}=8\)
\(={r}=2\)
Substituting \( {r}=2 \) in (1), we obtain \( a (1+2+4)=16 \)
\(={a}(7)=16\)
\(={a}=\frac{16}{7}\)
\({S}_{{n}}=\frac{a\left(r^{n}-1\right)}{r-1}\)
\({S}_{{n}}=\frac{16}{7} \frac{\left(2^{n}-1\right)}{2-1}=\frac{16}{7}\left(2^{n}-1\right)\)
15. Given a G.P. with \( {a}=729 \) and \( 7^{\text {th}} \) term \(64 \), determine \({S}_{7}\).
Answer
\(A=729 a^{7}=64\)
Let, \( r \) be the common ratio of the G.P. it is known that,
\(=a_{n}=a r n^{-1}\)
\(=a_{7}=a r^{7-1}=(729) r^{6}\)
\(=64=729 r^{6}\)
\(=r^{6}=\frac{64}{729}\)
\(=r^{6}=\left(\frac{2}{3}\right)^{6}\)
\(=r=\frac{2}{3}\)
Also, it is known that,
\({S}_{{n}}=\frac{a\left(1-r^{n}\right)}{1-r}\)
\({S}_{7}=\frac{729\left[1-\left(\frac{2}{3}\right)^{7}\right]}{1-\frac{2}{3}}\)
\(=3 \times 729\left[1-\left(\frac{2}{3}\right)^{7}\right]\)
\(=(3)^{7}\left[\frac{\left[(3)^{7}-(2)^{7}\right.}{(3)^{7}}\right]\)
\(=(3)^{7}-(2)^{7}\)
\(=2187-128\)
\(=2059\)
16. Find a G.P. for which sum of the first two terms is \(-4\) and the fifth term is 4 times the third term.
Answer
Let, a be the first term and \( r \) be the common ratio of the G.P.
According to the given condition,
\({S}_{2}=-4=\frac{a\left(1-r^{2}\right)}{1-r} \ldots(1)\)
\(={a}_{5}=4 \times {a}^{3}\)
\(={a} {r}^{4}=4 {ar}^{2}={r}^{2}=4\)
\(={r}= \pm 2\)
From (1), we obtain
\(-4=\frac{a\left[1-(2)^{2}\right]}{1-2} \text { for } {r}=2\)
\(=-4=\frac{a(1-4)}{-1}\)
\(=-4={a}(3)\)
\(={a}=\frac{-4}{3}\)
Also, \( -4=\frac{a\left[1-(-2)^{2}\right]}{1-(-2)} \) for \( {r}=-2 \)
\(=-4=\frac{a(1-4)}{1+2}\)
\(=-4=\frac{a(-3)}{3}\)
\(={a}=4\)
Thus, the required G.P. is \( \frac{-4}{3}, \frac{-8}{3}, \frac{-16}{3}, \ldots \) or \( 4,-8,16,-32, \ldots \)
17. If the \( 4^{\text {th}}, 10^{\text {th}} \) and \( 16^{\text {th}} \) terms of a G.P. are \( x, y \) and \( z \), respectively. Prove that \( {x}, {y}, {z} \) is in G.P.
Answer
Let, a be the first term and \( r \) be the common ratio of the G.P.
According to the given condition,
\(=a_{4}=a r^{3}=x \ldots(1)\)
\(=a_{10}=a r^{9}=y \ldots(2)\)
\(=a_{16}=a r^{15}=z \ldots(3)\)
Dividing (2) by (1), we obtain
\(\frac{y}{x}=\frac{a r^{9}}{a r^{3}}=\frac{y}{x}={r}^{6}\)
Dividing (3) by (2), we obtain
\(\frac{z}{y}=\frac{a r^{15}}{a r^{9}}=\frac{z}{y}={r}^{6}\)
\(=\frac{y}{x}=\frac{z}{y}\)
Thus, \( x, y, z \) is in G.P.
18. Find the sum to n terms of the sequence, \(8, 88,888,8888 \ldots \)
Answer
The given sequence is \( 8,88,888,8888 \ldots \)
This sequence is not a G.P. however, it can be changed to G.P.by writing the terms as
\({S}_{{n}}=8+88+888+8888+\ldots .+{n} \text { terms }\)
\(=\frac{8}{9}[9+99+999+9999+\ldots \text { to n terms }]\)
\(=\frac{8}{9}\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\left(10^{4}-1\right)+\ldots \text { to n terms}\right]\)
\(=\frac{8}{9}\left[\left(10+10^{2}+\ldots . {n} \text { terms}\right)-(1+1+1+{n} \text { terms})\right]\)
\(=\frac{8}{9}\left(\frac{10\left(10^{n}-1\right)}{10-1}-n\right)\)
\(=\frac{8}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]\)
\(=\frac{80}{81}\left(10^{n}-1\right)-\frac{8}{9} n\)
19. Find the sum of the products of the corresponding terms of the sequences \( 2,4,8,16,32 \) and \( 128,32,8,2,\frac{ 1 }{ 2 }\).
Answer
Required sum \( =2 \times 128+4 \times 32+8 \times 8+16 \times 2+32 \times \frac{1}{2} \)
\(=64\left[4+2+1+\frac{1}{2}+\frac{1}{2^{2}}\right]\)
Here, \( 4,2,1, \frac{1}{2}, \frac{1}{2^{2}} \) is a G.P.
First term, \( {a}=4 \)
Common ratio \( {r}=\frac{1}{2} \)
It is known that,
\({S}_{{n}}=\frac{a\left(1-r^{n}\right)}{1-r}\)
\({S}_{5}=\frac{4\left[1-\left(\frac{1}{2}\right)^{5}\right]}{1-\frac{1}{2}}=\frac{4\left[1-\frac{1}{32}\right]}{\frac{1}{2}}=8\left(\frac{32-1}{32}\right)=\frac{31}{4}\)
Required sum \( =64 \times \frac{31}{4}=(16)(31)=496 \)
20. Show that the products of the corresponding terms of the sequences form \( {a}, {ar}, {ar}^{2}, \ldots ar^{n-1}\) and \( A,AR, {AR}^{2}, \ldots {AR}^{{n}-1} \) a G.P, and find the common ratio.
Answer
It has to be proved that the sequence: \( a {A} , ar {AR}, ar^{2} {AR}^{2}, \ldots a {r}^{{n}-1} {AR}^{{n}-1} \), forms a G.P.
\(\frac{\text { second term }}{\text { first term }}=\frac{a r A R}{a A}={Rr}\)
\(\frac{\text { third term }}{\text {second term }}=\frac{a r^{2} A R^{2}}{a r A R}={Rr}\)
Thus, the above sequence forms a G.P. and the common ratio is \( r {R} \).
21. Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the \( 4^{\text {th}} \) by 18.
Answer
Let, a be the first term and \( r \) be the common ratio of the G.P.
\(=a_{1}=a, a_{2}=a r, a_{3}=a r^{2}, a_{4}=a r^{3}\)
By the given condition
\(=a_{3}=a_{1}+9=a r^{2}=a+9 \ldots(1)\)
\(=a_{2}=a_{4}+18=a r=a r^{3}+18 \ldots(2)\)
From eq. (1) and (2), we obtain
\(=a\left(r^{2}-1\right)=9 \ldots(3)\)
\(=ar\left(1-r^{2}\right)=18 \ldots(4)\)
Dividing (4) by (3), we obtain
\(\frac{a r\left(1-r^{2}\right)}{a\left(r^{2}-1\right)}=\frac{18}{9}\)
\(=-r=2\)
\(=r=-2\)
Substituting the value of \( r \) in (1), we obtain
\(4 a=a+9\)
\(=3 a=9\)
\(=a=3\)
Thus, the first four numbers of the G.P. are \( 3,3(-2), 3(-2)^{2} \) and \( 3(-2)^{3} \) i.e., \( 3,-6,12 \), and \(-24\) .
ncert exemplar class 11 maths || ncert solutions for class 11 maths chapter 9 || class 11 maths exercise 9.3 solutions || sequences and series class 11 ncert solutions || exercise 9.3 class 11 maths solutions || class 11 maths ncert solutions chapter 9 || class 11 ch 9 exercise 9.3 solutions || class 11 chapter 9 exercise 9.3 solution || ex 9.3 class 11 maths ncert solutions || Class 11 rd sharma exercise 9.3 solutions
Download the Math Ninja App Now
22. If \( p^{\text {th}}, q^{\text {th}} \) and \( r^{\text {th}} \) terms of a G.P. are \( {a}, {b} \) and \(c \), respectively. Prove that \( A^{q-r} \cdot b^{r-p} . c^{p-q}=1 \).
Answer
Let, A be the first term and R be the common ratio of the G.P.
According to the given information,
\({AR}^{{p}-1}={a}\)
\({AR}^{{q}-1}={b}\)
\({AR}^{{r}-1}={c}\)
\(=a^{q-r} \cdot b^{r-p} \cdot c^{p-q}\)
\(=A^{q-r} \times R^{(p-1)(q-r)} \times A^{r-p} \times R^{(q-1)(r-p)} \times A^{p-q} \times R^{(r-1)(p-q)}\)
\(=A^{q-r-r-p+p-q} \times R^{(p r-p r-q+r)+(r q-r+p-p q)+(p r-p-q r+q)}\)
\(=A^{0} \times R^{0}\)
\(=1\)
Thus, the given result is proved.
23. If the first and the \( {n}^{\text {th}} \) term of a G.P. are a ad \( b \), respectively, and if P is the product of n terms, prove that \( {P}^{2}=({ab})^{{n}} \).
Answer
The first terms of the A.P. is a and the last term is \( b \).
Therefore, the G.P. is \(a, a {r}, {ar}^{2}, {ar}^{3} \ldots {ar}^{{n}-1} \), where \(r\) is common ratio
\(={b}={ar}^{{n}-1} \quad\ldots\ldots(1)\)
\(={p}=\text { product of } {n} \text { terms }\)
\(=({a})(a {r})\left({ar}^{2}\right) \ldots\left({ar}^{{n}-1}\right)\)
\(=({a} \times {a} \times {a})\left({r} \times {r}^{2} \times \ldots{r}^{{n}-1}\right)\)
\(=an. r^{1+2+\ldots({n}-1)}\quad \ldots\ldots(2)\)
Here, \( 1,2, \ldots({n}-1) \) is an A.P.
\(=1+2+\ldots+({n}-1)\)
\(=\frac{n-1}{2}[2+(n-1-1) \times 1]\)
\(=\frac{n-1}{2}[2+n-2]\)
\(=\frac{n(n-1)}{2}\)
\({P}={a}^{{n}} r^{\frac{n(n-1)}{2}}\)
\({P}^{2}={a}^{2 {n}} r^{n(n-1)}\)
\(=\left[a^{2} r^{(n-1)}\right]^{n}\)
\(=\left[a \times a r^{n-1}\right]^{n}\)
\(=({ab})^{{n}} \text { [using eq. (1)] }\)
Thus, the given result id proved.
24. Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from \( (n+1)^{\text {th}} \) to \( (2 n)^{\text {th}} \) term is \( \frac{1}{r^{n}} \).
Answer
Let, a be the first term and \( r \) be the common ratio of the G.P.
Sum of first n terms \( =\frac{a\left(1-r^{n}\right)}{1-r} \)
Since there are n terms from \( (n+1)^{\text {th}} \) to \( (2 n)^{\text {th}} \) term,
Sum of terms from \( (n+1)^{\text {th}} \) to \( (2 n)^{\text {th}} \) term
\({S}_{{n}}=\frac{a_{n+1}\left(1-r^{n}\right)}{1-r}\)
Thus, required ratio \( =\frac{a\left(1-r^{n}\right)}{1-r} \times \frac{1-r}{a r^{n}\left(1-r^{n}\right)}=\frac{1}{r^{n}} \)
Thus, the ratio of the sum of first n terms of a G.P. to the sum of terms from \( (n+1)^{\text {th}} \) to \( (2 n)^{\text {th}} \) terms is \( \frac{1}{r^{n}} \)
25. If \( {a}, {b}, {c} \) and \(d\) are in G.P. show that: \(\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c-c d)^{2}\)
Answer
\( {a}, {b}, {c} \) and \(d\) are in G.P. therefore,
\(=b {c}={ad} \ldots(1)\)
\(={b} ^{2}={ac} \ldots(2)\)
\(={c} ^{2}=b {d} \ldots(3)\)
It has to be proved that,
\(\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c-c d)^{2}\)
R.H.S.
\(=(a b+b c+c d)^{2}\)
\(=(a b+a d+c d)^{2}\quad[\text {using (1)}]\)
\(=[a b+d(a+c)]^{2}\)
\(=a^{2} b^{2}+2 a b d(a+c)+d^{2}(a+c)^{2}\)
\(=a^{2} b^{2}+2 a^{2} b d+2 a c b d+d^{2}\left(a^{2}+2 a c+c^{2}\right)\)
\(=a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}+d^{2} a^{2}+2 d^{2} b^{2}+d^{2} c^{2}\quad[\text {using (1) and (2)}]\)
\(=a^{2} b^{2}+a^{2} c^{2}+a^{2} c^{2}+b^{2} c^{2}+b^{2} c^{2}+d^{2} a^{2}+d^{2} b^{2}+d^{2} b^{2}+d^{2} c^{2}\)
\(=a^{2} b^{2}+a^{2} c^{2}+a^{2} d^{2}+b^{2} \times b^{2}+b^{2} c^{2}+b^{2} d^{2}+c^{2} d^{2}+c^{2} \times c^{2}+c^{2} d^{2}\)
[using (2) and (3) and rearranging terms]
\(=a^{2}\left(b^{2}+c^{2}+d^{2}\right)+b^{2}\left(b^{2}+c^{2}+d^{2}\right)+c^{2}\left(b^{2}+c^{2}+d^{2}\right)\)
\(=\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=\text { L.H.S. }\)
L.H.S. \( = \) R.H.S.
\(=\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c-c d)^{2}\)
26. Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
Answer
Let, \( G_{1} \) and \( G_{2} \) be two numbers between 3 and 81 such that the series, \(3 , {G}_{1}, {G}_{2}, 81, \) forms a G.P.
Let, a be the first term and \( r \) be the common ratio of the G.P.
\(81=(3)(r)^{3}\)
\(=r^{3}=27\)
\(=r=3 \text { (taken real roots only) }\)
For \( r=3 \)
\({G}_{1}={ar}=(3)(3)=9\)
\({G}_{2}={a} {r}^{2}=(3)(3)^{2}=27\)
Thus, the required two numbers are \(9\) and \(27 \).
27. Find the value of n so that \( \frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}} \) may be the geometric mean between a and b.
Answer
A.M. is a and b is \( \sqrt{a b} \)
By the given condition: \( \frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}=\sqrt{a b} \)
Squaring both sides, we obtain
\(=\frac{\left(a^{n+1}+b^{n+1}\right)^{2}}{\left(a^{n}+b^{n}\right)^{2}}=a b\)
\(={a}^{2 {n}+2}+2 {a}^{{n}+1} b^{{n}+1}+{b}^{2 {n}+2}=({ab})\left({a}^{2 {n}}+2 {a}^{{n}} b^{{n}}+b^{2 {n}}\right)\)
\(={a}^{2 {n}+2}+2 {a}^{{n}+1} {b}^{{n}+1}+{b}^{2 {n}+2}={a}^{2 {n}+1} {b}+2 {a}^{{n}+1} b^{{n}+1}+{ab}^{2 {n}+1}\)
\(={a}^{2 {n}+2}+{b}^{2 {n}+2}={a}^{2 {n}+1} {b}+{a} b^{2 {n}+1}\)
\(={a}^{2 {n}+2}-{a}^{2 {n}+1} {b}={ab}^{2 {n}+1}-{b}^{2 {n}+2}\)
\(={a}^{2 {n}+1}({a}-{b})={b}^{2 {n}+1}({a}-{b})\)
\(=\left(\frac{a}{b}\right)^{2 n+1}=1=\left(\frac{a}{b}\right)^{0}\)
\(=2 {n}+1=0\)
\(={n}=\frac{-1}{2}\)
28. The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio \( (3+2 \sqrt{2}):(3-2 \sqrt{2}) \)
Answer
Let, the two numbers be \(a\) and \(b \).
\(\text {G.M. }=\sqrt{a b}\)
According to the given condition,
\(=a+b=6 \sqrt{a b} \ldots(1)\)
\(=(a+b)^{2}=36(a b)\)
Also, \( ({a}-{b})^{2}=({a}+{b})^{2}-4 {ab}=36 {ab}-4 {ab}=32 {ab} \)
\(=a-b=\sqrt{32} \sqrt{a b}\)
\(=4 \sqrt{2} \sqrt{a b} \ldots (2) \)
Adding (1) and (2), we obtain
\(2 a=(6+4 \sqrt{2}) \sqrt{a b}\)
\(=a=(3+2 \sqrt{2}) \sqrt{a b}\)
Substituting the value of a in (1), we obtain
\(={b}=6 \sqrt{a b}-(3+2 \sqrt{2}) \sqrt{a b}\)
\(={b}=(3-2 \sqrt{2}) \sqrt{a b}\)
\(=\frac{a}{b}=\frac{(3+2 \sqrt{2}) \sqrt{a b}}{(3-2 \sqrt{2}) \sqrt{a b}}=\frac{3+2 \sqrt{2}}{3-2 \sqrt{2}}\)
Thus, the required ratio is \( (3+2 \sqrt{2}):(3-2 \sqrt{2}) \)
29. If \( A \) and \( G \) be A.M. and G.M., respectively between two positive numbers, prove that the numbers are \( {A} \pm \sqrt{(A+G)(A-G)} \)
Answer
It is given that A and G are A.M. and G.M. between two positive numbers.
Let, these two positive numbers be \(a\) and \(b \).
\(=\text {A.M.}={A}=\frac{a+b}{2} \ldots(1)\)
\(\text {G.M.}={G}=\sqrt{a b} \ldots(2)\)
From (1) and (2), we obtain
\(=a+b=2 A \ldots(3)\)
\(=a b=G^{2} \ldots (4)\)
Substituting the value of \( a \) and \( b \) from (3) and (4) in the identity
\( (a-b)^{2}=(a+b)^{2}-4 a b \). We obtain
\( (a-b)^{2}=4 A^{2}-4 G^{2}=4\left(A^{2}-G^{2}\right) \)
\( ({a}-{b})^{2}=4({A}+{G})({A}-{G}) \)
\( ({a}-{b})=2 \sqrt{(A+G)(A-G)}\ldots (5) \)
From (3) and (5), we obtain
\(2 {a}=2 {A}+2 \sqrt{(A+G)(A-G)}\)
\(={a}={A}+\sqrt{(A+G)(A-G)}\)
Substituting the value of a in (3), we obtain
\(={b}=2 {A}-{A}-\sqrt{(A+G)(A-G)}={A}-\sqrt{(A+G)(A-G)}\)
Thus, the two numbers are \( {A} \pm \sqrt{(A+G)(A-G)} \)
30. The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of \( 2^{\text {nd}} \) hour, \( 4^{\text {th}} \) hour and an hour?
Answer
It is given that the number of bacteria doubles every hour. Therefore, the numbers of bacteria after every hour will form a G.P.
Here, \( {a}=30 \) and \( {r}=2 \)
\(={a}_{3}=ar^{2}=(30)(2)^{2}=120\)
Therefore, the numbers of bacteria at the end of \( 2^{\text {nd}} \) hour will be \(120 \).
\(={a}_{5}={ar}^{4}=(30)(2)^{4}=480\)
The number of bacteria at the end of \( 4^{\text {th}} \) hour will be \(480 \).
\(={a}_{{n}+1}={a} r^{{n}}=(30) 2^{{n}}\)
Thus, numbers of bacteria at the end of \( {n}^{\text {th}} \) hour will be \( 30(2)^{{n}} \)
31. What will ₹500 amounts to in 10 years after its deposit in a bank which pays annual interest rate of \( 10 \% \) compounded annually?
Answer
The amount deposited in the bank is ₹ \(500 \).
At the end of first year, amount \( =₹ 500\left(1+\frac{1}{10}\right)= \) rs \(500(1.1)\)
At the end of \( 2^{\text {nd}} \) year, amount \( =₹ 500(1.1)(1.1) \)
At the end of \( 3^{\text {rd}} \) year, amount \( =₹ 500(1.1)(1.1)(1.1) \) and so on.
Amount at the end of 10 years \( =₹ 500(1.1)(1.1) \ldots\) \((10 \text{ times})= \text{Rs }500 (1.1)^{10} \)
32. If A.M. and G.M. of roots of a quadratic equation are 8 and 5, respectively, then obtain the quadratic equation.
Answer
Let, the root of the quadratic equation be a and b.
According to the given condition,
\(\text {A.M.}=\frac{a+b}{2}=8={a}+{b}=16 \ldots(1)\)
\(\text {G.M.}=\sqrt{a b}=5={ab}=25 \ldots (2)\)
The quadratic equation is given by,
\( x^{2}-x \) (sum of roots) \(+\) (product of roots) \( =0 \)
\(x^{2}-x(a+b)+(a b)=0\)
\( x^{2}-16 x+25=0\quad \) [using (1) and (2)]
thus, the required quadratic equation is \( x^{2}-16 x+25=0 \)
ncert exemplar class 11 maths || ncert solutions for class 11 maths chapter 9 || class 11 maths exercise 9.3 solutions || sequences and series class 11 ncert solutions || exercise 9.3 class 11 maths solutions || class 11 maths ncert solutions chapter 9 || class 11 ch 9 exercise 9.3 solutions || class 11 chapter 9 exercise 9.3 solution || ex 9.3 class 11 maths ncert solutions || Class 11 rd sharma exercise 9.3 solutions
Download the Math Ninja App Now

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top