Ex 6.2 class 12 maths ncert solutions

Ex 6.2 class 12 maths ncert solutions || class 12 maths exercise 6.2 || class 12 maths ncert solutions chapter 6 exercise 6.2 || exercise 6.2 class 12 maths ncert solutions || application of derivatives class 12 ncert solutions (English Medium)

NCERT Solutions for Class 12 Maths – Exercise 6.2 (Application of Derivatives)
Exercise 6.2 of Class 12 Maths NCERT Solutions is based on the concept of rate of change of quantities, a key part of the chapter Application of Derivatives. This exercise helps students understand how derivatives can be applied to measure how one quantity changes with respect to another, which is crucial in real-life mathematical modeling. The Class 12 Maths Exercise 6.2 NCERT Solutions offer clear, step-by-step explanations to build a strong foundation in calculus. Perfect for English Medium students, this content follows the CBSE curriculum precisely. By practicing with the Class 12 Maths NCERT Solutions Chapter 6 Exercise 6.2, students can enhance their analytical skills and become confident in solving problems involving changing rates. The Exercise 6.2 Class 12 Maths NCERT Solutions serve as a valuable resource for exam preparation and understanding practical applications of derivatives.

Ex 6.2 class 12 maths ncert solutions
class 12 maths ncert solutions chapter 6 exercise 6.2 || class 12 maths exercise 6.2 || exercise 6.2 class 12 maths ncert solutions || application of derivatives class 12 ncert solutions || ex 6.2 class 12 maths ncert solutions
Download the Math Ninja App Now

Exercise 6.2

1. Show that the function given by \( \mathrm{f}(x)=3 x+17 \) is strictly increasing on R.
Answer
Let \( x_{1} \) and \( x_{2} \) be any two numbers in \( R \).
Then, we have,
\(
x_{1} < x_{2}\)
\(\Rightarrow 3 x_{1} < 3x_{2}\)
\(\Rightarrow 3 x_{1}+17 < 3 x_{2}+17\)
\(\Rightarrow \mathrm{f}\left(x_{1}\right) < \mathrm{f}\left(x_{2}\right)
\)
Therefore, f is strictly increasing on R .
2. Show that the function given by \( f(x)=e^{2 x} \) is strictly increasing on R.
Answer
Let \( x_{1} \) and \( x_{2} \) be any two numbers in \( R \).
The, we have,
\(x_{1} < x_{2}\)
\(\Rightarrow 2 x_{1} < 2 x_{2}\)
\(\Rightarrow \mathrm{e}^{2 x_{1}} < \mathrm{e}^{2 x_{2}}\)
\(\Rightarrow \mathrm{f}\left(x_{1}\right) < \mathrm{f}\left(x_{2}\right)\)
Therefore, \( f \) is strictly increasing on \( R \)

3.

(a) Show that the function given by \( f(x)=\sin x \) is
strictly increasing in \( \left(0, \frac{\pi}{2}\right) \)
Answer
(a) The function is \( f(x)=\sin x \)
Then, \( \mathrm{f}^{\prime}(x)=\cos x \)
Since for each \( x \in\left(0, \frac{\pi}{2}\right), \cos x > 0 \), we have \( f^{\prime}(x) > 0 \)
Therefore, \( \mathrm{f}^{\prime} \) is strictly increasing in \( \left(0, \frac{\pi}{2}\right) \).
(b) Show that the function given by \( f(x)=\sin x \) is strictly decreasing in \( \left(\frac{\pi}{2}, \pi\right) \)
Answer
The function is \( f(x)=\sin x \)
Then, \( f^{\prime}(x)=\cos x \)
Since for each \( x \in\left(\frac{\pi}{2}, \pi\right), \cos x < 0 \), we have \( \mathrm{f}^{\prime}(x) < 0 \)
Therefore, \( \mathrm{f}^{\prime} \) is strictly decreasing in \( \left(\frac{\pi}{2}, \pi\right) \).
(c) Show that the function given by \( f(x)=\sin x \) is neither increasing nor decreasing in \( (0, \pi) \)
Answer
The function is \( f(x)=\sin x \)
Then, \( \mathrm{f}^{\prime}(x)=\cos x \)
Since for each \( x \in\left(0, \frac{\pi}{2}\right), \cos x > 0 \), we have \( f^{\prime}(x) > 0 \)
Therefore, \( \mathrm{f}^{\prime} \) is strictly increasing in \( \left(0, \frac{\pi}{2}\right)\ldots(1) \)
Now, The function is \( f(x)=\sin x \)
Then, \( \mathrm{f}^{\prime}(x)=\cos x \)
Since, for each \( x \in\left(0, \frac{\pi}{2}\right), \cos x < 0 \), we have \( \mathrm{f}^{\prime}(x) < 0 \)
Therefore, \( \mathrm{f}^{\prime} \) is strictly decreasing in \( \left(\frac{\pi}{2}, \pi\right) \ldots(2)\)
From (1) and (2),
It is clear that f is neither increasing nor decreasing in \( (0, \pi) \).
class 12 maths ncert solutions chapter 6 exercise 6.2 || class 12 maths exercise 6.2 || exercise 6.2 class 12 maths ncert solutions || application of derivatives class 12 ncert solutions || ex 6.2 class 12 maths ncert solutions
Download the Math Ninja App Now

4.

(a) Find the intervals in which the function \( f \) given by \( f(x)=2 x^{2}-3 x \) is strictly increasing
Answer
It is given that function \( f(x)=2 x^{2}-3 x \)
\(
\Rightarrow \mathrm{f}^{\prime}(x)=4 x-3
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
x=\frac{3}{4}
\)
So, the points \( \frac{3}{4} \) divides the real line into two disjoint intervals, \( \left(-\infty, \frac{3}{4}\right) \) and \( \left(\frac{3}{4}, \infty\right) \)

So, in interval \( \left(\frac{3}{4}, \infty\right), f^{\prime}(x)=4 x-3 > 0 \)
Therefore, the given function (f) is strictly increasing in interval \( \left(\frac{3}{4}, \infty\right) \).
(b) Find the intervals in which the function \( f \) given by \( f(x)=2 x^{2}-3 x \) is strictly decreasing
Answer
It is given that function \( f(x)=2 x^{2}-3 x \)
\(\Rightarrow \mathrm{f}^{\prime}(x)=4x-3
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
x=\frac{3}{4}
\)
So, the points \( \frac{3}{4} \) divides the real line into two disjoint intervals, \( \left(-\infty, \frac{3}{4}\right) \) and \( \left(\frac{3}{4}, \infty\right) \).

So, in interval \( \left(-\infty, \frac{3}{4}\right) \quad f^{\prime}(x)=4 x-3 < 0 \)
Therefore, the given function ( f ) is strictly decreasing in interval \( \left(\frac{3}{4}, \infty\right) \).

5.

(a) Find the intervals in which the function \( f \) given by \( f(x)=2 x^{3}-3 x^{2}- \) \( 36 x+7 \) is strictly increasing
Answer
It is given that function \( f(x)=2 x^{3}-3 x^{2}-36 x+7 \)
\(
\Rightarrow \mathrm{f}^{\prime}(x)=6 x^{2}-6 x+36\)
\(\Rightarrow \mathrm{f}^{\prime}(x)=6\left(x^{2}-x+6\right)\)
\(\Rightarrow \mathrm{f}^{\prime}(x)=6(x+2)(x-3)
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
\Rightarrow x=-2,3
\)
So, the points \( x=-2 \) and \( x=3 \) divides the real line into two disjoint intervals, \( (-\infty, 2),(-2,3) \) and \( (3, \infty) \)

So, in interval \( (-\infty, 2),(3, \infty) \)
\(
f^{\prime}(x)=6(x+2)(x-3) > 0
\)
Therefore, the given function (f) is strictly increasing in interval \( (-\infty, 2) \), \( (3, \infty) \).
(b) Find the intervals in which the function \( f \) given by \( f(x)=2 x^{3}-3 x^{2}- \) \( 36 x+7 \) is strictly decreasing
Answer
It is given that function \( f(x)=2 x^{3}-3 x^{2}-36 x+7 \)
\(
\begin{array}{l}
\Rightarrow \mathrm{f}^{\prime}(x)=6 x^{2}-6 x+36 \\
\Rightarrow \mathrm{f}^{\prime}(x)=6\left(x^{2}-x+6\right) \\
\Rightarrow \mathrm{f}^{\prime}(x)=6(x+2)(x-3)
\end{array}
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
\Rightarrow x=-2,3
\)
So, the points \( x=-2 \) and \( x=3 \) divides the real line into two disjoint intervals, \( (-\infty, 2),(-2,3) \) and \( (3, \infty) \)

So, in interval \( (-2,3) \)
\(
f^{\prime}(x)=6(x+2)(x-3) < 0
\)
Therefore, the given function ( f ) is strictly decreasing in interval \( (-2,3) \).
6A. Find the intervals in which the following functions are strictly increasing or decreasing: \( x^{2}+2 x-5 \)
Answer
It is given that function \( f(x)=x^{2}+2 x-5 \)
\(
f^{\prime}(x)=2 x+2
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
\Rightarrow x=-1
\)
So, the point \( x=-1 \) divides the real line into two disjoint intervals, \( (-\infty,- \) 1) and \( (1, \infty) \)
So, in interval \( (-\infty,-1) \)
\(
\mathrm{f}^{\prime}(x)=2 x+2 < 0
\)
Therefore, the given function (f) is strictly decreasing in interval \( (-\infty,-1) \).
And in interval \( (1, \infty) \)
\(
f^{\prime}(x)=2 x+2 > 0
\)
Therefore, the given function (f) is strictly increasing in interval \( (1, \infty) \). Thus, f is strictly increasing for \( x > -1 \).
6B. Find the intervals in which the following functions are strictly increasing or decreasing: \(
10-6 x-2 x^{2}
\)
Answer
It is given that function \( f(x)=10-6 x-2 x^{2} \)
\(
f^{\prime}(x)=-6-4 x
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
\Rightarrow x=\frac{-3}{2} .
\)
So, the point \( x=\frac{-3}{2} \) divides the real line into two disjoint intervals,
\(
\left(-\infty, \frac{-3}{2}\right) \text { and }\left(\frac{-3}{2}, \infty\right)
\)
So, in interval \( \left(-\infty, \frac{-3}{2}\right) \)
\(
x < \frac{-3}{2}\)
\(-4 x > 6-6-4 x > 0\)
\(f^{\prime}(x)=-6-4 x > 0
\)
Therefore, the given function (f) is strictly increasing in interval \( \left(-\infty, \frac{-3}{2}\right) \).
And in interval \( \left(\frac{-3}{2}, \infty\right) \)
\(
f^{\prime}(x)=-6-4 x < 0
\)
Therefore, the given function (f) is strictly decreasing in interval \( \left(\frac{-3}{2}, \infty\right) \).
Thus, \( f \) is strictly decreasing for \( x > \frac{-3}{2} \).
6C. Find the intervals in which the following functions are strictly increasing or decreasing: \( -2 x^{3}-9 x^{2}-12 x+1 \)
Answer
It is given that function \( f(x)=-2 x^{3}-9 x^{2}-12 x+1 \)
\(
\Rightarrow f^{\prime}(x)=-6 x^{2}-18 x+12\)
\(\Rightarrow f^{\prime}(x)=-6\left(x^{2}+3 x+6\right)\)
\(\Rightarrow f^{\prime}(x)=-6(x+1)(x+2)
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
\Rightarrow x=-1 \text { and }-2
\)
So, the points \( x=-1 \) and \( x=-2 \) divides the real line into two disjoint intervals,
\(
(-\infty,-2),(-2,-1) \text { and }(-1, \infty)
\)
So, in interval \( (-\infty,-2),(-1, \infty) \)
\(
f^{\prime}(x)=-6(x+1)(x+2) < 0
\)
Therefore, the given function (f) is strictly decreasing for \( x < -2 \) and \( x > - \) 1 .
So, in interval \( (-2 .-1) \)
\(
f^{\prime}(x)=-6(x+1)(x+2) > 0
\)
Therefore, the given function (f) is strictly increasing for \( -2 < x < -1 \).
6D. Find the intervals in which the following functions are strictly increasing or decreasing: \( 6-9 x-x^{2} \).
Answer
It is given that function \( f(x)=6-9 x-x^{2} \)
\(
f^{\prime}(x)=-9-2 x
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
\Rightarrow x=\frac{-9}{2}
\)
So, the point \( x=\frac{-9}{2} \) divides the real line into two disjoint intervals, \( \left(-\infty, \frac{-9}{2}\right) \) and \( \left(\frac{-9}{2}, \infty\right) \)
So, in interval \( \left(-\infty, \frac{-9}{2}\right) \)
\(
f^{\prime}(x)=-9-2 x > 0
\)
Therefore, the given function (f) is strictly increasing for \( x < \frac{-9}{2} \).
And in interval \( \left(\frac{-9}{2}, \infty\right) \)
\(
f^{\prime}(x)=-9-2 x < 0
\)
Therefore, the given function (f) is strictly decreasing for \( x > \frac{-9}{2} \).
Thus, f is strictly decreasing for \( x > \frac{-9}{2} \).
6E. Find the intervals in which the following functions are strictly increasing or decreasing: \( (x+1)^{3}(x-1)^{3} \)
Answer
It is given that function \( \mathrm{f}(x)=-(x+1)^{3}(x-3)^{3} \)
\(
\Rightarrow \mathrm{f}^{\prime}(x)=3(x+1)^{2}(x-3)^{3}+3(x+1)^{3}(x-3)^{2}\)
\(\Rightarrow \mathrm{f}^{\prime}(x)=3(x+1)^{2}(x-3)^{2}[x-3+x+1]\)
\(\Rightarrow \mathrm{f}^{\prime}(x)=6(x+1)^{2}(x-3)^{2}(x-1)
\)
If \( f^{\prime}(x)=0 \), then we get,
\(
\Rightarrow x=-1,3 \text { and } 1
\)
So, the points \( x=-1, x=1 \) and \( x=3 \) divides the real line into four disjoint
intervals,
\(
(-\infty,-1),(-1,1),(-1,3) \text { and }(3, \infty)
\)
So, in interval \( (-\infty,-1),(-1,1) \)
\(
f^{\prime}(x)=6(x+1)^{2}(x-3)^{2}(x-1) < 0
\)
Therefore, the given function (f) is strictly decreasing in intervals \( (-\infty,-1),(-1,1) \).
So, in interval \( (1,3) \) and \( (3, \infty) \)
\(
f^{\prime}(x)=6(x+1)^{2}(x-3)^{2}(x-1) > 0
\)
Therefore, the given function (f) is strictly increasing in intervals \( (1,3) \) and \( (3, \infty) \).
7. Show that \( y=\log (1+x)-\frac{2 x}{2+x}, x > -1 \), is an increasing function of \(x\) throughout its domain.
Answer
Let \( y=\log (1+x)-\frac{2 x}{2+x} \)
\( \Rightarrow \frac{d y}{d x}=\frac{1}{1+x}-\frac{(2+x) \cdot 2-2 \times(1)}{(2+x)^{2}} \)
\( \Longrightarrow \frac{1}{1+x}-\frac{4+2 x-2 x}{(2+x)^{2}}=\frac{1}{1+x}-\frac{4}{(2+x)^{2}} \)
\( =\frac{(2+x)^{2}-4(1+x)}{(1+x)(2+x)^{2}} \)
\( =\frac{\left(4+x^{2}+4 x\right)-(4-4 x)}{(1+x)(2+x)^{2}} \)
\( =\frac{x^{2}}{(1+x)(2+x)^{2}} \)
\( =\frac{d y}{d x}=\frac{1}{1+x}\left(\frac{x}{2+x}\right)^{2} \)
Now, \( x > -1 \)
\( \Rightarrow 1+x > 0 \)
Also, for all \( x > -1, \frac{x}{x+2 x} > 0 \)
\( \Rightarrow \frac{d y}{d x}=\frac{1}{1+x}\left(\frac{x}{2+x}\right)^{2} > \) for \( x > -1 \)
Therefore, \( f \) is an increasing function throughout its domain.
class 12 maths ncert solutions chapter 6 exercise 6.2 || class 12 maths exercise 6.2 || exercise 6.2 class 12 maths ncert solutions || application of derivatives class 12 ncert solutions || ex 6.2 class 12 maths ncert solutions
Download the Math Ninja App Now
8. Find the values of \(x\) for which \( y=[x(x-2)]^{2} \) is an increasing function.
Answer
It is given that \( y=[x(x-2)]^{2} \), then,
\(
\frac{d y}{d x}=y^{\prime}=2\left(x^{2}-2 x\right)(2 x-2)\)
\(=4 x(x-2)(x-1)
\)
Now if \( \frac{d y}{d x}=0 \)
\(
\Rightarrow x=0,1,2
\)
So, the points \( x=0, x=1 \) and \( x=2 \) divides the real line into four disjoint intervals,
\(
(-\infty, 0),(0,1),(1,2) \text { and }(2, \infty)
\)
So, in interval \( (-\infty, 0),(1,2) \)
\(
\frac{d y}{d x} < 0
\)
Therefore, the given function (f) is strictly decreasing in intervals (\( \infty, 0),(1,2) \)
So, in interval \( (0,1) \) and \( (2, \infty) \)
\(
\frac{d y}{d x} > 0
\)
Therefore, the given function (f) is strictly increasing for \( 0 < x < 1 \) and \( x > 2 \)
9. Prove that \( y=\frac{4 \sin \theta}{(2+\cos \theta)}-\theta \) is an increasing function of \( \theta \) in \( \left[0, \frac{\pi}{2}\right] \)
Answer
We have, \( y=\frac{4 \sin \theta}{(2+\cos \theta)}-\theta \)
\(
\therefore \frac{d y}{d x}=\frac{(2+\cos \theta)(4 \cos \theta)-4 \sin \theta(-\sin \theta)}{(2+\cos \theta)^{2}}-1\)
\(=\frac{8 \cos \theta+4 \cos ^{2} \theta-4 \sin \theta(-\sin \theta)}{(2+\cos \theta)^{2}}-1
\)
\(
=\frac{8 \cos \theta+4 \cos ^{2} \theta+4 \sin ^{2} \theta}{(2+\cos \theta)^{2}}-1\)
\(=\frac{8 \cos \theta+4}{(2+\cos \theta)^{2}}-1
\)
Now, \( \frac{d y}{d x}=0 \)
\(
\Rightarrow \frac{8 \cos \theta+4}{(2+\cos \theta)^{2}}=1\)
\(\Rightarrow 8 \cos \theta+4=4+\cos ^{2} \theta+4 \cos \theta\)
\(\Rightarrow \cos ^{2} \theta-4 \cos \theta=0\)
\(\Rightarrow \cos \theta(\cos \theta-4)=0\)
\(\Rightarrow \cos \theta=0 \text { or } \cos \theta=4
\)
Since, \( \cos \theta \neq 0 \Longrightarrow \theta=\frac{\pi}{2} \)
\(
\Longrightarrow \cos \theta=0 \Longrightarrow \theta=\frac{\pi}{2}
\)
Now, \( \frac{d y}{d x}=\frac{8 \cos \theta+4-\left(4 \cos ^{2} \theta+4 \sin ^{2} \theta\right)}{(2+\cos \theta)^{2}} \)
\(
=\frac{4 \cos \theta-\cos ^{2} \theta}{(2+\cos \theta)^{2}}\)
\(=\frac{4 \cos \theta(4-\cos \theta)}{(2+\cos \theta)^{2}}
\)
In interval, \( \left(0, \frac{\pi}{2}\right) \), we have \( \cos \theta > 0 \). Also, \( 4 > \cos \theta \)
\(
\Rightarrow 4-\cos \theta > 0
\)
Therefore, \( \cos \theta(4-\cos \theta) > 0 \) and also \( (2+\cos \theta)^{2} > 0 \)
\(
\Rightarrow \frac{\cos \theta(4-\cos \theta)}{(2+\cos \theta)^{2}} > 0\)
\(\Rightarrow \frac{d y}{d x} > 0
\)
Therefore, \(y\) is strictly increasing in interval \( \left(0, \frac{\pi}{2}\right) \).
Also, the given function is continuous at \( x=0 \) and \( x=\frac{\pi}{2} \).
Therefore, \(y\) is increasing in interval \( \left[0, \frac{\pi}{2}\right] \).
10. Prove that the logarithmic function is strictly increasing on \( (0, \infty) \).
Answer
The given function is \( f(x)=\log x \)
\(
\Rightarrow f^{\prime}=\frac{1}{x}
\)
It is clear that for \( x > 0, f^{\prime}=\frac{1}{x} > 0 \)
Therefore, \( \mathrm{f}(x)=\log x \) is strictly increasing in interval \( (0, \infty) \).
11. Prove that the function \( f \) given by \( f(x)=x^{2}-x+1 \) is neither strictly increasing nor strictly decreasing on \( (-1,1) \).
Answer
It is given that function \( f(x)=x^{2}-x+1 \)
\( \mathrm{f}^{\prime}(x)=2 x-1 \)
If \( f^{\prime}(x)=0 \), then we get,
\( \Rightarrow x=\frac{1}{2} \)
So, the point \( x=\frac{1}{2} \) divides the interval \( (-1,1) \) into two disjoint intervals, \( \left(-1, \frac{1}{2}\right) \) and \( \left(\frac{1}{2}, 1\right) \)
So, in interval \( \left(-1, \frac{1}{2}\right) \)
\( \mathrm{f}^{\prime}(x)=2 x-1 < 0 \)
Therefore, the given function (f) is strictly decreasing in interval \( \left(-1, \frac{1}{2}\right) \)
So, in interval \( \left(\frac{1}{2}, 1\right) \).
\(
\mathrm{f}^{\prime}(x)=2 x-1 > 0
\)
Therefore, the given function (f) is strictly increasing in interval for \( \left(\frac{1}{2}, 1\right) \)
Therefore, \( f \) is neither strictly increasing and decreasing in interval (\( 1,1) \).
12. Which of the following functions are strictly decreasing on \( \left(0, \frac{\pi}{2}\right) \) ?
A. \( \cos x \) B. \( \cos 2 x \) C. \( \cos 3 x \) D. \( \tan x \)
Answer
(A) Let \( \mathrm{f}_{1}(x)=\cos x \)
\(
\therefore f_{1}^{\prime}=-\sin x
\)
In interval \( \left(0, \frac{\pi}{2}\right), f_{1}^{\prime}=-\sin x < 0 \).
Therefore, \( f_{1}(x)=\cos x \) is strictly decreasing in interval \( \left(0, \frac{\pi}{2}\right) \).
(B) Let \( \mathrm{f}_{2}(x)=\cos 2 x \)
\(
\therefore f_{2}^{\prime}(x)=-2 \sin 2 x
\)
Now, \( 0 < x < \frac{\pi}{2} \)
\(
\begin{array}{l}
\Rightarrow 0 < 2 x < \pi \\
\Rightarrow \sin 2 x > 0 \\
\Rightarrow-2 \sin 2 x < 0
\end{array}
\)
\(
\therefore f_{2}^{\prime}(x)=-2 \sin 2 x < 0 \text { on }\left(0, \frac{\pi}{2}\right)
\)
Therefore, \( f_{2}(x)=\cos 2 x \) is strictly decreasing in interval \( \left(0, \frac{\pi}{2}\right) \).
(C) Let \( \mathrm{f}_{3}(x)=\cos 3 x \)
\(
\therefore f_{3}^{\prime}(x)=-3 \sin 3 x
\)
Now, \( f_{3}^{\prime}=0 \)
\( \Rightarrow \sin 3 x=0 \)
\( \Rightarrow 3 x=\pi \), as \( x \in\left(0, \frac{\pi}{2}\right) \)
\(
\Rightarrow x=\frac{\pi}{3}
\)
The point \( x=\frac{\pi}{3} \) divides the interval \( \left(0, \frac{\pi}{2}\right) \) into two distinct intervals.
i.e. \( \left(0, \frac{\pi}{3}\right) \) and \( \left(\frac{\pi}{3}, \frac{\pi}{2}\right) \)
Now, in interval \( \left(0, \frac{\pi}{3}\right) \),
\( \mathrm{f}_{3}^{\prime}(x)=-3 \sin 3 x < 0 \) as \( \left(0 < x < \frac{\pi}{2} \Rightarrow 0 < 3 x < \pi\right) \)
Therefore, \( f_{3} \) is strictly decreasing in interval \( \left(0, \frac{\pi}{3}\right) \).
Now, in interval \( \left(\frac{\pi}{3}, \frac{\pi}{2}\right) \).
\(
f_{3}^{\prime}(x)=-3 \sin 3 x > 0 \text { as } \frac{\pi}{3} < x < \frac{\pi}{3} \Rightarrow \pi < 3 x < \frac{3 \pi}{2}
\)
Therefore, \( \mathrm{f}_{3} \) is strictly increasing in interval \( \left(\frac{\pi}{3}, \frac{\pi}{2}\right) \).
(D) Let \( \mathrm{f}_{4}=\tan x \)
\( \therefore \mathrm{f}_{3}{ }^{\prime}(x)=\sec ^{2} x \)
In interval \( \left(0, \frac{\pi}{2}\right) \),
\(
f_{3}^{\prime}=\sec ^{2} x > 0
\)
Therefore, f 4 is strictly increasing in interval \( \left(0, \frac{\pi}{2}\right) \).
13. On which of the following intervals is the function \( f \) given by \( f(x) \) \( =x^{100}+\sin x-1 \) strictly decreasing?
A. \( (0,1) \) B. \( \left(\frac{\pi}{2}, \pi\right) \) C. \( \left(0, \frac{\pi}{2}\right) \) D. None of these
Answer
It is given that \( f(x)=x^{100}+\sin x-1 \)
Then, \( f^{\prime}(x)=100 x^{99}+\cos x \)
In interval \( (0,1), \cos x > 0 \) and \( 100 x^{99} > 0 \)
\(
\Rightarrow \mathrm{f}^{\prime}(x) > 0
\)
Therefore, function f is strictly increasing in interval \( (0,1) \).
In interval \( \left(\frac{\pi}{2}, \pi\right), \cos x < 0 \) and \( 100 x^{99} > 0 \).
Also, \( 100 x^{99} > \cos x \)
\(
\Rightarrow \mathrm{f}^{\prime}(x) > 0 \text { in }\left(\frac{\pi}{2}, \pi\right)
\)
Therefore, function f is strictly increasing in interval \( \left(\frac{\pi}{2}, \pi\right) \).
In interval \( \left(0, \frac{\pi}{2}\right), \cos x < 0 \) and \( 100 x^{99} > 0 \).
Also, \( 100 x^{99} > \cos x \)
\(
\Rightarrow \mathrm{f}^{\prime}(x) > 0 \text { on }\left(0, \frac{\pi}{2}\right)
\)
Therefore, function f is strictly increasing in interval \( \left(0, \frac{\pi}{2}\right) \).
Hence, function f is strictly decreasing on none of the intervals.
14. Find the least value of a that the function \( f \) given by \( f(x)=x^{2}+a x +1\) is strictly increasing on \( [1,2] \).
Answer
It is given that function \( f(x)=x^{2}+a x+1 \)
\(
f^{\prime}(x)=2 x+a
\)
Now, function f will be increasing in \( [1,2] \),
\(
\text { if } f^{\prime}(x) > 0 \text { in }[1,2]\)
\(\Rightarrow 2 x+a > 0\)
\(\Rightarrow 2 x > -a
\)
\(
\Rightarrow \mathrm{a} < -2 x
\)
Therefore, we have to find the least value of a such that
\(
\Rightarrow \mathrm{a} < -2 x \text { when } x \in[1,2]
\)
Now, \( 1 \leq x \leq 2 \)
\(
\Rightarrow-4 \leq-2 x \leq-2
\)
Therefore, the least value of a for \( f \) to be increasing on \( [1,2] \) is given by
\(
\Rightarrow \mathrm{a}=-4
\)
Therefore, the least value of a is -4 .
15. Let I be any interval disjoint from [-1, 1]. Prove that the function f given by \( \mathrm{f}(x)=x+\frac{1}{x} \) is strictly increasing on 1 .
Answer
It is given that \( f(x)=x+\frac{1}{x} \)
\(
\therefore \mathrm{f}^{\prime}(x)=1-\frac{1}{x^{2}}
\)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(
\Rightarrow x= \pm 1
\)
The points \( x=1 \) and \( x=-1 \) divide the real line in three disjoint intervals \( (-\infty,-1),(-1,1) \) and \( (1, \infty) \)
Now in interval, \( (-1,1) \)
it is clear that \( -1 < x < 1 \)
\(
\Rightarrow x^{2} < 1
\)
\(
\Rightarrow 1-\frac{1}{x^{2}} < 0, x \neq 0\)
Therefore, \( \mathrm{f}^{\prime}(x)=1-\frac{1}{x^{2}} < 0(-1,1) \sim\{0\} \)
Therefore, f is strictly decreasing on \( (-1,1) \sim\{0\} \)
\(
x < -1 \text { or } 1 < x\)
\(\Rightarrow x^{2} > 1\)
\(\Rightarrow 1-\frac{1}{x^{2}}\)
\(\Rightarrow 1-\frac{1}{x^{2}} > 0
\)
Therefore, \( \mathrm{f}^{\prime}(x)=1-\frac{1}{x^{2}} > 0(-\infty,-1) \) and \( (1, \infty) \)
Therefore, fis strictly increasing in interval I disjoint from ( \( -1,1 \) ) Hence Proved.
16. Prove that the function f given by \( \mathrm{f}(x)=\log \sin x \) is strictly increasing on \( \left(0, \frac{\pi}{2}\right) \) and strictly decreasing on \( \left(\frac{\pi}{2}, \pi\right) \).
Answer
It is given that \( \mathrm{f}(x)=\log \sin x \)
\( \Rightarrow f^{\prime}(x)=\frac{1}{\sin x} \cos x=\cot x \)
In interval \( \left(0, \frac{\pi}{2}\right), \mathrm{f}^{\prime}(x)=\cot x > 0 \)
Therefore, f is strictly increasing in \( \left(0, \frac{\pi}{2}\right) \).
In interval \( \left(\frac{\pi}{2}, \pi\right), \mathrm{f}^{\prime}(x)=\cot x < 0 \)
Therefore, f is strictly decreasing in \( \left(\frac{\pi}{2}, \pi\right) \).
17. Prove that the function f given by \( \mathrm{f}(x)=\log |\cos x| \) is strictly decreasing on \( \left(0, \frac{\pi}{2}\right) \) and strictly increasing on \( \left(\frac{3 \pi}{2}, 2 \pi\right) \).
Answer
It is given that \( f(x)=\log |\cos x| \)
\( \Rightarrow f^{\prime}(x)=\frac{1}{\cos x}(-\sin x)=-\tan x \)
In interval \( \left(0, \frac{\pi}{2}\right), \mathrm{f}^{\prime}(x)=-\tan x < 0 \)
Therefore, f is strictly decreasing on \( \left(0, \frac{\pi}{2}\right) \).
In interval \( \left(\frac{3 \pi}{2}, 2 \pi\right), \mathrm{f}^{\prime}(x)=-\tan x > 0 \)
Therefore, f is strictly increasing in \( \left(\frac{3 \pi}{2}, 2 \pi\right) \).
18. Prove that the function given by \( f(x)=x^{3}-3 x^{2}+3 x-100 \) is increasing in \( R \).
Answer
We have, \( f(x)=x^{3}-3 x^{2}+3 x-100 \)
\(
\Rightarrow f^{\prime}(x)=3 x^{2}-6 x+3\)
\(=3\left(x^{2}-2 x+1\right)
\)
\(
=3(x-1) 2
\)
For any \( x \in \mathrm{R},(x-1) 2 > 0 \)
Thus, \( f^{\prime}(x) \) is always positive in \( R \).
Therefore, the given function ( \( f \) ) is increasing in \( R \).
19. The interval in which \(y=x^{2} \mathrm{e}^{-x} \) is increasing is
A. \( (-\infty, \infty) \) B. \( (-2,0) \) C. \( (2, \infty) \) D. \( (0,2) \)
Answer
it is given that \( y=x^{2} \mathrm{e}^{-x} \) then \( \frac{d y}{d x}=2 x e^{-x}-x^{2} e^{-x}=x e^{-x}(2-x) \)
Now if \( \frac{d y}{d x}=0 \)
\( \Rightarrow x=0 \) and \( x=2 \)
The points \( x=0 \) and \( x=2 \) divide the real line into three disjoint intervals ie, \( (-\infty, 0),(0,2) \) and \( (2, \infty) \).
In interval \( (-\infty, 0) \) and \( (2, \infty) \),
\( \mathrm{f}^{\prime}(x) < 0 \) as \( \mathrm{e}^{-x} \) is always positive.
Therefore, fis decreasing on \( (-\infty, 0) \) and \( (2, \infty) \).
In interval \( (0,2), \mathrm{f}^{\prime}(x) > 0 \)
Therefore, f is strictly increasing in interval (0.2).
class 12 maths ncert solutions chapter 6 exercise 6.2 || class 12 maths exercise 6.2 || exercise 6.2 class 12 maths ncert solutions || application of derivatives class 12 ncert solutions || ex 6.2 class 12 maths ncert solutions
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top