CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.4 || NCERT Solutions for Class 10 Maths Chapter 5: Arithmetic Progressions (English Medium)
NCERT Class 10 Mathematics Chapter 5: Arithmetic Progressions – For Free. || Get the complete NCERT Solutions for Class 10 Maths Chapter 5: Arithmetic Progressions, covering Exercise 5.4. This free resource helps you understand key concepts and solve problems with ease, perfect for Class 10 students preparing for exams using NCERT Maths materials. We hope the NCERT Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions Exercise 5.4 help you. If you have any queries regarding NCERT Maths Solutions Chapter 5 Arithmetic Progressions Exercise 5.4, drop a comment below, and we will get back to you at the earliest.
CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.4 || NCERT Solutions for Class 10 Maths Chapter 5: Arithmetic Progressions (English Medium)
Exercise 5.4
CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.4 || NCERT Solutions for Class 10 Maths Chapter 5: Arithmetic Progressions (English Medium)
Download the Math Ninja App NowLet the first negative term be '\( a_{n} \)'.
Also, we know that, nth term of an AP is given by \( a_{n}=a+(n-1) d \)
We have to find least value of \( n \), such that \( a_{n} < 0 \)
\( \Rightarrow \mathrm{a}+(\mathrm{n}-1) \mathrm{d} < 0 \)
\(\Rightarrow 121+(\mathrm{n}-1)(-4) < 0\)
\(\Rightarrow 121-4(\mathrm{n}-1) < 0\)
\(\Rightarrow 4(\mathrm{n}-1) > 121\)
\(\Rightarrow 4 \mathrm{n}-4 > 121\)
\(\Rightarrow 4 \mathrm{n} > 125\)
\(\Rightarrow \mathrm{n} > 31.25\)
Therefore, n is 32 [least positive integer greater than 31.25 is 32]
Hence, the 32nd term of AP is first negative term. Also, \( a_{32}=a+31 d \) \( =121+31(-4)=121-124=-3 \)
Given \( a_{3}+a_{7}=6 \)
\( a_{3} \times a_{7}=8 \)
nth term of an AP is given by the formula \( a_{n}=a+(n-1) d \) where, \( a_{n}= \) nth term \( \mathrm{n}= \) number of term \( \mathrm{d}= \) common difference. So now its given that sum of third and seventh term is 6, thus we need to find 3rd and 7th term first, \( \mathrm{a}_{3}=\mathrm{a}+2 \mathrm{d} \)
\( a_{7}=a+6 d \)
As per question;
\( a_{3}+a_{7}=6 \)
So now,
\(a+2 d+a+6 d=6\)
\(2 a+8 d=6\)
\(a+4 d=3\)
\(a=3-4 d\quad \ldots\ldots\text{(i)}\)
Similarly,
Product of third and seventh term is given as 8. So,
\((a+2 d)(a+6 d)=8\)
\(a^{2}+6 a d+2 a d+12 d^{2}=8\quad \ldots\ldots\text{(ii)}\)
Substituting the value of a in equation (ii), we get;
\((3-4 d)^{2}+8(3-4 d) d+12 d^{2}=8\)
\(9-24 d+16 d^{2}+24 d-32 d^{2}+12 d^{2}=8\)
\(9-4 d^{2}=8\)
\(2 d=1\)
\(d= \pm \frac{1 }{ 2}\)
Using the value of \( d \) in equation (1), we get;
\(a=3-4 d\)
\(a=3-4 \times \frac{1}{2}\)
\(\text {or, } a=3-2=1\)
Sum of first 16 terms is calculated as follows:
\(S=\frac{n}{2}[2 a+(n-1) d]\)
\(S_{16}=\frac{16}{2}\left[2 \times 1+(16-1) \times \frac{1}{2}\right]\)
\(S_{16}=8[2+(\frac{15 }{ 2})]\)
\(=4 \times 19\)
\(\mathrm{S}_{16}=76\)
Thus, sum of first 16 terms of this AP is 76.
Now by taking \( d=-\frac{1 }{ 2 }\), we get, \( a=3-4(-\frac{1 }{ 2}) a=3+2=5 \)
\( S=\frac{16}{2}\left[2 \times 5+(16-1) \frac{-1}{2}\right] \)
\( \mathrm{S}=8[10-\frac{15 }{ 2}] \mathrm{S}=4[20-15] \mathrm{S}=4[5]=20 \)
So, another possible value of sum is 20.
CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.4 || NCERT Solutions for Class 10 Maths Chapter 5: Arithmetic Progressions (English Medium)
Download the Math Ninja App Now\( \text {Number of rungs }=\frac{250}{25}+1 \)
Distance between any two rungs \( =25 \)
\( \text {Number of rungs }=11 \)
And it is also given that bottom most rungs is of 45 cm length and top most is of 25 cm length. As it is given that the length of rungs decrease uniformly, it will for an AP with \( \mathrm{a}=25, \mathrm{a}_{11}=45 \) and \( \mathrm{n}=11 \)
d can be calculated as follows:
nth term of an AP is given by
\(a_{n}=a+(n-1) d\)
\(a_{11}=a+10 d\)
\(45=25+10 d\)
\(10 d=45-25=20\)
\(d=2\)
Total length of wood will be equal to the sum of 11 terms:
\(S=\frac{N}{2}[2+(n-1) d\)
\(=\frac{11}{2}[2 \times 25+10 \times 2]\)
\(=11[25+(10)]\)
\(=11 \times 35\)
\(=385 \mathrm{~cm}\)
Therefore, total wood required for rungs is equal to 385 m
\( 1,2,3,\ldots\ldots, 49 \)
With first term, \( \mathrm{a}=1 \)
Common difference, \( \mathrm{d}=1 \)
nth term of \( A P=a+(n-1) d \)
\(\mathrm{a}_{\mathrm{n}}=1+(\mathrm{n}-1) 1\)
\(\mathrm{a}_{\mathrm{n}}=\mathrm{n}\quad \ldots\ldots\text{[1]}\)
Suppose there exist a mth term such that, \( (\mathrm{m} < 49) \)
Sum of first \( \mathrm{m}-1 \) terms of \(AP =\) Sum of terms following the mth term Sum of first \( m-1 \) terms of \( A P= \) Sum of whole \(AP -\) Sum of first \( m \) terms of AP
As we know sum of first n terms of an AP is,
\( S_{n}=\frac{n}{2}\left[a+a_{n}\right] \) if last term \( \mathrm{a}_{n} \) is given
\( \frac{m-1}{2}\left(a+a_{m-1}\right)=\frac{49}{2}\left(a+a_{49}\right)-\frac{m}{2}\left(a+a_{m}\right) \)
\( (\mathrm{m}-1)(1+\mathrm{m}-1)=49(1+49)-\mathrm{m}(1+\mathrm{m})\quad\) [using 1]
\( (\mathrm{m}-1) \mathrm{m}=2450-\mathrm{m}(1+\mathrm{m})\)
\(\mathrm{m}^{2}-\mathrm{m}=2450-\mathrm{m}+\mathrm{m}^{2}\)
\(2 \mathrm{m}^{2}=2450\)
\(\mathrm{m}^{2}=1225\)
\( \mathrm{m}=35 \) or \( \mathrm{m}=-35 \) [not possible as no of terms can't be negative.]
and \( \mathrm{a}_{\mathrm{m}}=\mathrm{m}=35 \) \(\quad\) [using 1]
So, sum of no of houses preceding the house no 35 is equal to the sum of no of houses following the house no 35.
CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.4 || NCERT Solutions for Class 10 Maths Chapter 5: Arithmetic Progressions (English Medium)
Download the Math Ninja App NowEach step has a rise of \( \frac{1}{4} \mathrm{~m} \) and a tread of \( \frac{1}{2} \mathrm{~m} \). (see Fig. 5.8). Calculate the total volume of concrete required to build the terrace.
Volume of \( 1^{\text {st}} \) step \( =6.25 \mathrm{~m}^{3} \)
Dimensions of \( 2^{\text {nd }} \) step \( =50 \mathrm{~m} \times 0.5 \mathrm{~m} \times 0.5 \mathrm{~m} \)
Volume of \( 2^{\text {nd}} \) step \( =12.5 \mathrm{~m}^{3} \)
Dimensions of \( 3^{\text {rd}} \) step \( =50 \mathrm{~m} \times 0.75 \mathrm{~m} \times 0.5 \mathrm{~m} \)
Volume of \( 3^{\text {rd}} \) step \( =18.75 \mathrm{~m}^{3} \)
Clearly, volumes of respective steps are in AP
Now, we have \( \mathrm{a}=6.25, \mathrm{~d}=6.25 \) and \( \mathrm{n}=15 \)
Sum of 15 terms can be calculated as follows:
\(S_{15}=\frac{15}{2}[2 \times 6.25+(14) 6.25]\)
\(=\frac{15}{2}(100)\)
\(=750\)
Hence, the volume of concrete will be \( 750 \mathrm{~m}^{3} \).
CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.4 || NCERT Solutions for Class 10 Maths Chapter 5: Arithmetic Progressions (English Medium)
Download the Math Ninja App NowCentral Board of Secondary Education Official Site
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.1
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.2
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.3
Class 10 : CBSE Class 10 Maths Chapter 2 Polynomials Ex 2.1
Class 10 : CBSE Class 10 Maths Chapter 2 Polynomials Ex 2.2
Class 10 : CBSE Class 10 Maths Chapter 2 Polynomials Ex 2.4
Class 10 : CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.2
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.3
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.4
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.5
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.6
Class 10 : CBSE Class 10 Maths Chapter 4 Quadratic Equations Ex 4.1 || NCERT Solutions for Class 10 Maths Chapter 4: Quadratic Equations (English Medium)
Class 10 : CBSE Class 10 Maths Chapter 4 Quadratic Equations Ex 4.2 || NCERT Solutions for Class 10 Maths Chapter 4: Quadratic Equations (English Medium)
Class 10 : CBSE Class 10 Maths Chapter 4 Quadratic Equations Ex 4.3 || NCERT Solutions for Class 10 Maths Chapter 4: Quadratic Equations (English Medium)
Class 10 : CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.1
Class 10 : CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.2
Class 10 : CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3
Class 10 : NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.2
Class 10 : CBSE Class 10 Maths Chapter 10 Circles solutions Ex 10.2
Class 10 : CBSE Class 10 Maths Chapter 13 Surface Areas and Volumes solutions Ex 13.2