CBSE Class 10 Maths Chapter 6 Triangle Ex 6.4 || NCERT Solutions for Class 10 Maths Chapter 6: Triangle (English Medium)

CBSE Class 10 Maths Chapter 6 Triangle Ex 6.4 || NCERT Solutions for Class 10 Maths Chapter 6: Triangle (English Medium)

Get the complete NCERT Solutions for Class 10 Maths Chapter 6: Triangle, covering Exercise 6.4. This free resource helps you understand key concepts and solve problems with ease, perfect for CBSE Class 10 students preparing for exams using NCERT Maths materials. We hope the NCERT Solutions for Class 10 Maths Chapter 6 Triangle Exercise 6.4 help you. If you have any queries regarding NCERT Maths Solutions Chapter 6 Triangle Exercise 6.4, drop a comment below, and we will get back to you at the earliest.

NCERT Solutions for Class 10 Maths Chapter 13: Surface Areas and Volumes || CBSE Class 10 Maths Chapter 13 solutions Ex 13.5

CBSE Class 10 Maths Chapter 6 Triangle Ex 6.4 || NCERT Solutions for Class 10 Maths Chapter 6: Triangle (English Medium)
Exercise - 6.4

CBSE Class 10 Maths Chapter 6 Triangle Ex 6.4 || NCERT Solutions for Class 10 Maths Chapter 6: Triangle (English Medium)
Download the Math Ninja App Now
1. Let \( \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF} \) and their areas be, respectively, \( 64 \mathrm{~cm}^{2} \) and \( 121 \mathrm{~cm}^{2} \). If \( \mathrm{EF}=15.4 \mathrm{~cm} \), find BC
Answer
It is given that,
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF} \)

Therefore,
\( \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(D E F)}=\left(\frac{A B}{D E}\right)^{2}=\left(\frac{B C}{E F}\right)^{2}=\left(\frac{A C}{D F}\right)^{2} \)
Given:
\( \mathrm{EF}=15.4 \mathrm{~cm}\)
\(\operatorname{ar}(\triangle \mathrm{ABC})=64 \mathrm{~cm}^{2}\)
\(\operatorname{ar}(\triangle \mathrm{DEF})=121 \mathrm{~cm}^{2} \)
Hence, \( \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(D E F)}=\left(\frac{B C}{E F}\right)^{2}\)
\(\frac{64}{121}=\frac{B C \times B C}{15.4 \times 15.4} \)
Taking square root on both of the sides \( \frac{B C}{15.4}=\frac{8}{11}\)
\(\mathrm{BC}=\frac{(8 \times 15.4) }{ 11}\)
\(\mathrm{BC}=8 \times 1.4=11.2 \mathrm{~cm} \)
2. Diagonals of a trapezium \( A B C D \) with \( A B \| D C \) intersect each other at the point O . If \( \mathrm{AB}=2 \mathrm{CD} \), find the ratio of the areas of triangles AOB and COD
Answer
Since \( A B \| C D \),
\( \therefore \angle \mathrm{OAB}=\angle \mathrm{OCD} \) and \( \angle \mathrm{OBA}=\angle \mathrm{ODC} \) (Alternate interior angles)

\( \triangle \mathrm{AOB} \) and \( \triangle \mathrm{COD} \),
\( \angle \mathrm{AOB}=\angle \mathrm{COD} \) (Vertically opposite angles)
\( \angle \mathrm{OAB}=\angle \mathrm{OCD} \) (Alternate interior angles)
\( \angle \mathrm{OBA}=\angle \mathrm{ODC} \) (Alternate interior angles)
\( \triangle \mathrm{AOB} \sim \triangle \mathrm{COD} \) (By AAA similarity)
When two triangles are similar, the reduced ratio of any two corresponding sides is called the scale factor of the similar triangles. If two similar triangles have a scale factor of \( a: b \), then the ratio of their areas is \( a^{2}: b^{2} \).
\( \frac{\operatorname{ar}(\triangle A O B)}{\operatorname{ar}(\triangle C O D)}=\frac{A B}{C D} \times \frac{A B}{C D} \)
Since, \( A B=2 C D \) (Given)
Therefore,
\( \frac{\operatorname{ar}(\triangle A O B)}{\operatorname{ar}(\triangle C O D)}=\frac{2 C D \times 2 C D}{C D \times C D}\)
\(\frac{\operatorname{ar}(\triangle A O B)}{\operatorname{ar}(\triangle C O D)}=\frac{4}{1}=4: 1 \)
CBSE Class 10 Maths Chapter 6 Triangle Ex 6.4 || NCERT Solutions for Class 10 Maths Chapter 6: Triangle (English Medium)
Download the Math Ninja App Now
3. In Fig. 6.44, ABC and DBC are two triangles on the same base BC . If AD intersects BC at O , show that \( \frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D B C)}=\frac{A O}{D O} \).
Answer

Construction: Draw two perpendiculars AP and DM on line BC and AB
To Prove \( =\frac{\text { area of } \triangle A B C}{\text { area of } \triangle D B C}=\frac{A O}{D O} \)
Area of a triangle \( =\frac{1 }{ 2} \times \) Base \( \times \) Height
Therefore,
\( \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{\frac{1}{2} \times B C \times A P}{\frac{1}{2} \times B C \times D M}\)
\(=\frac{A P}{D M} \)
In \( \triangle \mathrm{APO} \) and \( \triangle \mathrm{DMO} \),
\( \angle \mathrm{APO}=\angle \mathrm{DMO}\left(\right. \)Each \( \left.=90^{\circ}\right) \)
\( \angle \mathrm{AOP}=\angle \mathrm{DOM} \) (Vertically opposite angles)
\( \therefore \triangle \mathrm{APO} \sim \triangle \mathrm{DMO}( \) By AA similarity)
As we know in similar triangles the sides are proportional to each other.
\( \frac{A P}{D M}=\frac{A O}{D O} \)
\( \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O} \)
Hence, proved.
4. If the areas of two similar triangles are equal, prove that they are congruent

Answer
Let us consider two similar triangles as \( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \) (Given) When two triangles are similar, the reduced ratio of any two corresponding sides is called the scale factor of the similar triangles. If two similar triangles have a scale factor of \( a: b \), then the ratio of their areas is \( \boldsymbol{a}^{\mathbf{2}}: \boldsymbol{b}^{\mathbf{2}} \).
\( \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\left(\frac{\triangle A B}{\triangle P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{A C}{P R}\right)^{2} \)
Given that,
\( \operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{PQR}) \)
Therefore putting in equation (i) we get,
\( 1=\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{A C}{P R}\right)^{2} \)
\( \mathrm{AB}=\mathrm{PQ} \)
\( \mathrm{BC}=\mathrm{QR} \)
And,
\( \mathrm{AC}=\mathrm{PR} \)
Therefore,
\( \triangle A B C \cong \triangle P Q R\text{ (By SSS rule }) \)
Hence, Proved.
CBSE Class 10 Maths Chapter 6 Triangle Ex 6.4 || NCERT Solutions for Class 10 Maths Chapter 6: Triangle (English Medium)
Download the Math Ninja App Now
Mathninja.in
5. \( \mathrm{D}, \mathrm{E} \) and F are respectively the mid-points of sides \( \mathrm{AB}, \mathrm{BC} \) and CA of \( \triangle \mathrm{ABC} \). Find the ratio of the areas of \( \triangle \mathrm{DEF} \) and \( \triangle \mathrm{ABC} \).
Answer

Given: D, E and F are the mid points of sides \( \mathrm{AB}, \mathrm{BC} \) and CA respectively.
Because \( \mathrm{D}, \mathrm{E} \) and F are respectively the mid-points of sides \( \mathrm{AB}, \mathrm{BC} \) and CA of \( \triangle \mathrm{ABC} \),
Midpoint Theorem: The line segment connecting the midpoints of two sides of a triangle is parallel to the third side and is congruent to one half of the third side.
Therefore, From mid-point theorem,
\( \mathrm{DE} \| \mathrm{AC} \) and \( \mathrm{DE}=\frac{1}{2} \mathrm{AC} \)
DF|| BC and \( \mathrm{DF}=\frac{1}{2} \mathrm{BC} \)
\( \mathrm{EF} \| \mathrm{AB} \) and \( \mathrm{EF}=\frac{1}{2} \mathrm{AB} \)
Now, In \( \triangle \mathrm{BED} \) and \( \triangle \mathrm{BCA} \)
\( \angle \mathrm{BED}=\angle \mathrm{BCA} \) (Corresponding angles)
\( \angle \mathrm{BDE}=\angle \mathrm{BAC} \) (Corresponding angles)
\( \angle \mathrm{EBD}=\angle \mathrm{CBA} \) (Common angles)
Therefore,
If in two triangles, corresponding angles are equal, then their corresponding sides are in the same ratio and hence the two triangles are similar (AAA similarity criterion).
\( \triangle \mathrm{BED} \sim \triangle \mathrm{BCA} \) (From the AAA similarity)
Theorem 6.6: The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.
\( \frac{\operatorname{ar}(\triangle B E D)}{\operatorname{ar}(\triangle B C A)}=\left(\frac{D E}{A C}\right)^{2}\)
\(\frac{\operatorname{ar}(\triangle B E D)}{\operatorname{ar}(\triangle B C A)}=\left(\frac{D E}{2 D E}\right)^{2}\)
\(\frac{\operatorname{ar}(\triangle B E D)}{\operatorname{ar}(\triangle B C A)}=\frac{1}{4}\)
\(\operatorname{ar}(\triangle B E D)=\frac{1}{4} \operatorname{ar}(\triangle B C A) \)
Similarly,
\( \operatorname{ar}(\triangle C F E)=\frac{1}{4} \operatorname{ar}(\triangle C B A) \)
And,
\( \operatorname{ar}(\triangle A D F)=\frac{1}{4} \operatorname{ar}(\triangle A B C) \)
Also,
\( \operatorname{ar}(\triangle D E F)=\operatorname{ar}(\triangle A B C)-[\operatorname{ar}(\triangle B E D)+\operatorname{ar}(\triangle C F E)+\operatorname{ar}(\triangle A D F)]\)
\(\operatorname{ar}(\triangle D E F)=\operatorname{ar}(\triangle \mathrm{ABC})-\frac{3}{4} \operatorname{ar}(\triangle A B C)\)
\(=\frac{1}{4} \operatorname{ar}(\triangle A B C)\)
\(\frac{\operatorname{ar}(\triangle D E F)}{\operatorname{ar}(\triangle A B C)}=\frac{1}{4} \)
6. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.
Answer

Let us assume two similar triangles as \( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \).
Let AD and PS be the medians of these triangles
Then, because \( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \)
\( \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}\quad\ldots \text{(i)}\)
\(\angle \mathrm{A}=\angle \mathrm{P}, \angle \mathrm{B}=\angle \mathrm{Q}, \angle \mathrm{C}=\angle \mathrm{R} \quad\ldots \text{(ii)}\)
Since AD and PS are medians,
\( \mathrm{BD}=\mathrm{DC}= \frac{ \mathrm{BC} }{ {2} } \)
And, \( \mathrm{QS}=\mathrm{SR}= \frac{ \mathrm{QR} }{ {2} } \)
Equation (i) becomes,
\( \frac{A B}{P Q}=\frac{B D}{Q S}=\frac{A C}{P R} \quad\ldots \text{(iii)}\)
In \( \triangle \mathrm{ABD} \) and \( \triangle \mathrm{PQS} \),
\( \angle \mathrm{B}=\angle \mathrm{Q}\quad[ \)From (ii)\( ] \)
And
\( \frac{A B}{P Q}=\frac{B D}{Q S} \quad[ \)From (iii)\( ] \)
\( \triangle \mathrm{ABD} \sim \triangle \mathrm{PQS} \) (SAS similarity)
Therefore, it can be said that
\( \frac{A B}{P Q}=\frac{B D}{Q s}=\frac{A D}{P S} \quad\ldots \text{(iv)}\)
\( \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\left(\frac{\triangle A B}{\triangle P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{A C}{P R}\right)^{2} \)
From (i) and (iv), we get
\( \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}=\frac{A D}{P S} \)
And hence,
\( \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\left(\frac{\triangle A D}{\triangle P S}\right)^{2} \)
CBSE Class 10 Maths Chapter 6 Triangle Ex 6.4 || NCERT Solutions for Class 10 Maths Chapter 6: Triangle (English Medium)
Download the Math Ninja App Now
7. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.
Answer
Let \( A B C D \) be a square of side a

To Prove \( = \) Area of \( \triangle \mathrm{ABE}=\frac{1 }{ 2} \) Area of \( \triangle \mathrm{ADB} \)
Proof:
Let the side of square \( = \) To find the length of the diagonal of the square,
Pythagoras Theorem : It states that the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.
Applying pythagoras theorem in \( \triangle \mathrm{ADB} \)
\( \mathrm{AD}^{2}+\mathrm{AB}^{2}=\mathrm{BD}^{2} \)
\( B D=\sqrt{2} a \)
Two desired equilateral triangles are formed as \( \triangle \mathrm{ABE} \) and \( \triangle \mathrm{DBF} \)
Side of an equilateral triangle, \( \triangle \mathrm{ABE} \), described on one of its sides \( = a\)
Side of an equilateral triangle, \( \triangle \mathrm{DBF} \), described on one of its diagonals \( =\sqrt{2} a \)
Area of an equilateral triangle \( =\frac{\sqrt{3}}{4} side^{2} \)
\( \frac{\text { Area of } \triangle A B E}{\text { Area of } \triangle D B F}=\frac{\frac{\sqrt{3}}{4} a^{2}}{\frac{\sqrt{3}}{4}(\sqrt{2} a)^{2}} \)
\( \frac{\text { Area of } \triangle A B E}{\text { Area of } \triangle D B F}=\frac{a^{2}}{2 a^{2}} \)
Area of \( \triangle D B F=2 \) Area of \( \triangle A B E \)
Therefore, Area of equilateral triangle on one of the side of the square is half of the area of equilateral triangle on diagonal.
8. ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Ratio of the areas of triangles ABC and BDE is
A. \( 2: 1 \) B. \( 1: 2 \)
C. \( 4: 1 \). D. \( 1: 4 \)
Answer

Given: D is mid point of BC
We know:
Equilateral triangles have all its angles as \( 60^{\circ} \) and all its sides are of the same length. Therefore, all equilateral triangles are similar to each other.
Hence, the ratio between the areas of these triangles will be equal to the square of the ratio between the sides of these triangles.
Let side of \( \triangle \mathrm{ABC}=\mathrm{x} \)
Therefore,
Side of \( \triangle B D E=\frac{x}{2} \)
Therefore,
\( \frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle B D E}=\left(\frac{\text { Side of } \triangle A B C}{\text { Side of } \triangle B D E}\right)^{2}=\frac{\left(\frac{x}{x}\right)^{2}}{2}\)
\(\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle B D E}=2^{2}: 1\)
\(\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle B D E}=4: 1 \)
Hence, the correct answer is C.
9. Sides of two similar triangles are in the ratio 4 : 9. Areas of these triangles are in the ratio
A. \( 2: 3 \) B. \( 4: 9 \)
C. \( 81: 16 \) D. \( 16: 81 \)
Answer
If two triangles are similar to each other, then the ratio of the areas of these triangles will be equal to the square of the ratio of the corresponding sides of these triangles.
It is given that the sides are in the ratio \( 4: 9 \)
Therefore,
Ratio between areas of these triangles \( =\left(\frac{4}{9}\right)^{2} \)
\( =\frac{16}{81} \)
Hence, the correct answer is (D).
CBSE Class 10 Maths Chapter 6 Triangle Ex 6.4 || NCERT Solutions for Class 10 Maths Chapter 6: Triangle (English Medium)
Download the Math Ninja App Now

Central Board of Secondary Education Official Site
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.1
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.2
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.3
Class 10 : CBSE Class 10 Maths Chapter 2 Polynomials Ex 2.1
Class 10 : CBSE Class 10 Maths Chapter 2 Polynomials Ex 2.2
Class 10 : CBSE Class 10 Maths Chapter 2 Polynomials Ex 2.4
Class 10 : CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.2
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.3
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.4
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.5
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.6
Class 10 : CBSE Class 10 Maths Chapter 4 Quadratic Equations Ex 4.1 || NCERT Solutions for Class 10 Maths Chapter 4: Quadratic Equations (English Medium)
Class 10 : CBSE Class 10 Maths Chapter 4 Quadratic Equations Ex 4.2 || NCERT Solutions for Class 10 Maths Chapter 4: Quadratic Equations (English Medium)
Class 10 : CBSE Class 10 Maths Chapter 4 Quadratic Equations Ex 4.3 || NCERT Solutions for Class 10 Maths Chapter 4: Quadratic Equations (English Medium)
Class 10 : CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.1
Class 10 : CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.2
Class 10 : CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3
Class 10 : NCERT Math Solutions for Class 10 Maths Chapter 6 Triangle(English Medium) || CBSE Class 10 Maths Chapter 6 Triangle Ex 6.1
Class 10 : NCERT Math Solutions for Class 10 Maths Chapter 6 Triangle(English Medium) || CBSE Class 10 Maths Chapter 6 Triangle Ex 6.2
Class 10 : NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.2
Class 10 : CBSE Class 10 Maths Chapter 10 Circles solutions Ex 10.2
Class 10 : CBSE Class 10 Maths Chapter 13 Surface Areas and Volumes solutions Ex 13.2
CBSE Class 10 Maths Chapter 6 Triangle Ex 6.4 || NCERT Solutions for Class 10 Maths Chapter 6: Triangle (English Medium)
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top