(ii) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( \frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A \)
\( \frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A \)
Answer
\( \frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A \) \(\text { L.H.S. }=\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}\)
\(=\frac{\cos ^{2} A+(1+\sin A)^{2}}{(1+\sin A)(\cos A)^{2}}\)
\(=\frac{\cos ^{2} A+1+\sin ^{2} A+2 \sin A}{(1+\sin A)(\cos A)}\)
\(=\frac{\sin ^{2} A+\cos ^{2} A+1+2 \sin A}{(1+\sin A)(\cos A)}\)
\(=\frac{1+1+2 \sin A}{(1+\sin A)(\cos A)}=\frac{2+2 \sin A}{(1+\sin A)(\cos A)}\)
\(=\frac{2(1+\sin A)}{(1+\sin A)(\cos A)}=\frac{2}{\cos A}=2 \sec A\)
\(=R . H . S \text {. }\)
(iii) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( \frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta \)
\( \frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta \)
Answer
\( \frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta \)L.H.S. \( =\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta} \)
\( =\frac{\frac{\sin \theta}{\cos \theta}}{1-\frac{\cos \theta}{\sin \theta}} +\frac{\frac{\cos \theta}{\sin \theta}}{1 - \frac{\sin \theta}{\cos \theta}} \)
\( =\frac{\frac{\sin \theta}{\cos \theta}}{\frac{\sin \theta-\cos \theta}{\sin \theta}+\frac{\cos \theta}{\cos \theta}} \)
\(=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\sin \theta(\sin \theta-\cos \theta)}\)
\( =\frac{1}{(\sin \theta-\cos \theta)}\left[\frac{\sin ^{2} \theta}{\cos \theta} - \frac{\cos^2 \theta}{\sin \theta} \right] \)
\(=\left(\frac{1}{\sin \theta-\cos \theta}\right)\left[\frac{\sin ^{3} \theta-\cos ^{3} \theta}{\sin \theta \cos \theta}\right]\)
\(=\left(\frac{1}{\sin \theta-\cos \theta}\right)\left[\frac{(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta\right)}{\sin \theta \cos \theta}\right]\)
\(=\frac{(1+\sin \theta \cos \theta)}{(\sin \theta \cos \theta)}\)
\( =\sec \theta \operatorname{cosec} \theta \)
\(=R . H . S\)
NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 || CBSE class 10 maths chapter 8 Ex 8.4
Download the Math Ninja App Now![Mathninja.in](https://mathninja.in/CDN/remoteFiles/math-ninja-web_banner.png)
(iv) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( \frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A} \)
\( \frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A} \)
Answer
\( \frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A} \)L. H.S. \( =\frac{1+\sec A}{\sec A}=\frac{1+\frac{1}{\cos A}}{\frac{1}{\cos A}} \)
\(=\frac{\cos A+1}{\cos A}=(\cos A+1)\)
\(=\frac{(1-\cos A)(1+\cos A)}{(1-\cos A)}\)
\(=\frac{1-\cos ^{2} A}{1-\cos A}=\frac{\sin ^{2} A}{1-\cos A}\)
\( = \) R.H.S.
(v) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( \frac{\cos A - \sin A+1}{\cos A + \sin A-1} \) \(= \operatorname{cosec} A + \cot A\), using the identity \(\operatorname{cosec}^{2} A= 1 + cot^{2} A\)
\( \frac{\cos A - \sin A+1}{\cos A + \sin A-1} \) \(= \operatorname{cosec} A + \cot A\), using the identity \(\operatorname{cosec}^{2} A= 1 + cot^{2} A\)
Answer
\( \frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A \)Using the identity \( \operatorname{cosec}^{2} A=1+\cot ^{2} A \)
\(\text { L.H.S. }=\frac{\cos A-\sin A+1}{\cos A+\sin A-1}\)
\(=\frac{\frac{\cos A \sin A}{\sin A}+\frac{1}{\sin A}}{\frac{\sin A}{\sin A}+\frac{\sin A}{\sin A}+\frac{1}{\sin A}}\)
\(=\frac{\cot A-1+\operatorname{cosec} A}{\cot A+1-\operatorname{cosec} A}\)
\(=\frac{\{(\cot A)-(1-\operatorname{cosec} A)\}\{(\cot A)-(1-\operatorname{cosec} A)\}}{\{(\cot A)+(1-\operatorname{cosec} A)\}\{(\cot A)-(1-\operatorname{cosec} A)\}}\)
\(=\frac{(\cot A-1+\operatorname{cosec} A)^{2}}{(\cot A)^{2}-(1-\operatorname{cosec} A)^{2}}\)
\(=\frac{\cot ^{2} A+1+\operatorname{cosec}^{2} A-2 \cot A-2 \operatorname{cosec} A+2 \cot A \operatorname{cosec} A}{\cot ^{2} A-\left(1+\operatorname{cosec}^{2} A-2 \operatorname{cosec} A\right)}\)
\(=\frac{2 \operatorname{cosec}^{2} A+2 \operatorname{cosec} A-2 \cot A-2 \operatorname{cosec} A}{\cot ^{2} A-1-\operatorname{cosec}^{2} A+2 \operatorname{cosec} A}\)
\(=\frac{2 \operatorname{cosec} A(\operatorname{cosec} A+\cot A)-2(\cot A+\operatorname{cosec} A)}{\cot ^{2} A-\operatorname{cosec}^{2} A-1+2 \operatorname{cosec} A}\)
\(=\frac{(\operatorname{cosec} A+\cot A)(2 \operatorname{cosec} A-2)}{-1-1+2 \operatorname{cosec} A}\)
\(=\frac{(\operatorname{cosec} A+\cot A)(2 \operatorname{cosec} A-2)}{(2 \operatorname{cosec} A-2)}\)
\(=\operatorname{cosec} A+\cot A\)
\(=R . H . S\)
NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 || CBSE class 10 maths chapter 8 Ex 8.4
Download the Math Ninja App Now(vi) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( \sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A \)
\( \sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A \)
Answer
\( \sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A \)\(\text { L.H.S. }=\sqrt{\frac{1+\sin A}{1-\sin A}}\)
\(\quad=\sqrt{\frac{(1+\sin A)(1+\sin A)}{(1-\sin A)(1+\sin A)}}\)
\(=\frac{(1+\sin A)}{\sqrt{1-\sin ^{2} A}}=\frac{1+\sin A}{\sqrt{\cos ^{2} A}}\)
\(=\frac{1+\sin A}{\cos A}=\sec A+\tan A\)
\(=\text { R.H.S. }\)
(vii) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( \frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta \)
\( \frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta \)
Answer
\( \frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos \theta \cos \theta}=\tan \theta \)\(\text { L.H.S. } =\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}\)
\( =\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)}\)
\(=\frac{\sin \theta \times\left(1-2 \sin ^{2} \theta\right)}{\cos \theta \times\left\{2\left(1-\sin ^{2} \theta\right)-1\right\}}\)
\(=\frac{\sin \theta \times\left(1-2 \sin ^{2} \theta\right)}{\cos \theta \times\left(1-2 \sin ^{2} \theta\right)}\)
\(=\tan \theta=\text { R.H.S }\)
(viii) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( (\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A \)
\( (\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A \)
Answer
\((\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A\)\(\text { L.H.S }=(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}\)
\(=\sin ^{2} A+\operatorname{cosec}^{2} A+2 \sin A \operatorname{cosec} A+\cos ^{2} A+\sec ^{2} A+2 \cos A \sec A\)
\(=\left(\sin ^{2} A+\cos ^{2} A\right)+\left(\operatorname{cosec}^{2} A+\sec ^{2} A\right)+2 \sin A\left(\frac{1}{\sin A}\right)+2 \cos A\left(\frac{1}{\cos A}\right)\)
\(=(1)+\left(1+\cot ^{2} A+1+\tan ^{2} A\right)+(2)+(2)\)
\(=7+\tan ^{2} A+\cot ^{2} A\)
\(=\text { R.H.S }\)
(ix) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( (\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A} \)
\( (\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A} \)
Answer
\((\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}\)\(\text { L.H.S }=(\operatorname{cosec} A-\sin A)(\sec A-\cos A)\)
\(=\left(\frac{1}{\sin A}-\sin A\right)\left(\frac{1}{\cos A}-\cos A\right)\)
\( =\left(\frac{1-\sin ^{2} A}{\sin A}\right)\left(\frac{1-\cos ^{2} A}{\cos A}\right) \)
\(=\frac{\left(\cos ^{2} A\right)\left(\sin ^{2} A\right)}{\sin A \cos A}\)
\(=\sin A \cos A\)
\(\text { R.H.S }=\frac{1}{\tan A+\cot A}\)
\( =\frac{1}{\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}} = \frac{1}{\frac{\sin ^{2} A+\cos ^{2} A}{\sin A \cos A}} \)
\(=\frac{\sin A \cos A}{\sin ^{2} A+\cos ^{2} A}=\sin A \cos A\)
Hence, L.H.S = R.H.S
NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 || CBSE class 10 maths chapter 8 Ex 8.4
Download the Math Ninja App Now(x) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\(\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A \)
\(\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A \)
Answer
\(\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A\)\(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=\frac{1+\frac{\sin ^{2} A}{\cos ^{2} A}}{1+\frac{\cos ^{2} A}{\sin ^{2} A}}=\frac{\frac{\cos ^{2} A+\sin ^{2} A}{\cos ^{2} A}}{\frac{\cos ^{2} A}{\sin ^{2} A}}\)
\(=\frac{\frac{1}{\cos ^{2} A}}{\frac{1}{\sin ^{2} A}}=\frac{\sin ^{2} A}{\cos ^{2} A}\)
\(=\tan ^{2} A\)
\(\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\frac{1+\tan ^{2} A-2 \tan A}{1+\cot ^{2} A-2 \cot A}\)
\(=\frac{\sec ^{2} A-2 \tan A}{\operatorname{cosec}^{2} A-2 \cot A}\)
\(=\frac{\frac{1}{\cos ^{2} A}-\frac{2 \sin A}{\cos A}}{\frac{1}{\sin ^{2} A}-\frac{2 \cos A}{\sin A}}=\frac{\frac{1-2 \sin A \cos A}{\cos ^{2} A}}{\frac{1-2 \sin ^{2} A}{\sin ^{2} A}}\)
\(=\frac{\sin ^{2} A}{\cos ^{2} A}=\tan ^{2} A\)
NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 || CBSE class 10 maths chapter 8 Ex 8.4
Download the Math Ninja App NowCentral Board of Secondary Education Official Site
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.1
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.2
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.3
Class 10 : CBSE Class 10 Maths Chapter 2 Polynomials Ex 2.1
Class 10 : CBSE Class 10 Maths Chapter 2 Polynomials Ex 2.2
Class 10 : CBSE Class 10 Maths Chapter 2 Polynomials Ex 2.4
Class 10 : CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.2
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.3
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.4
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.5
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.6
Class 10 : CBSE Class 10 Maths Chapter 4 Quadratic Equations Ex 4.1 || NCERT Solutions for Class 10 Maths Chapter 4: Quadratic Equations (English Medium)
Class 10 : CBSE Class 10 Maths Chapter 4 Quadratic Equations Ex 4.2 || NCERT Solutions for Class 10 Maths Chapter 4: Quadratic Equations (English Medium)
Class 10 : CBSE Class 10 Maths Chapter 4 Quadratic Equations Ex 4.3 || NCERT Solutions for Class 10 Maths Chapter 4: Quadratic Equations (English Medium)
Class 10 : CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.1
Class 10 : CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.2
Class 10 : CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3
Class 10 : NCERT Math Solutions for Class 10 Maths Chapter 6 Triangle(English Medium) || CBSE Class 10 Maths Chapter 6 Triangle Ex 6.1
Class 10 : NCERT Math Solutions for Class 10 Maths Chapter 6 Triangle(English Medium) || CBSE Class 10 Maths Chapter 6 Triangle Ex 6.2
Class 10 : NCERT Math Solutions for Class 10 Maths Chapter 6 Triangle(English Medium) || CBSE Class 10 Maths Chapter 6 Triangle Ex 6.3
Class 10 : NCERT Math Solutions for Class 10 Maths Chapter 6 Triangle(English Medium) || CBSE Class 10 Maths Chapter 6 Triangle Ex 6.4
Class 10 : NCERT Math Solutions for Class 10 Maths Chapter 6 Triangle(English Medium) || CBSE Class 10 Maths Chapter 6 Triangle Ex 6.5
Class 10 : NCERT Math Solutions for Class 10 Maths Chapter 6 Triangle(English Medium) || CBSE Class 10 Maths Chapter 6 Triangle Ex 6.6
Class 10 : NCERT Math Solutions for Class 10 Maths Chapter 7 Coordinate Geometry(English Medium) || CBSE Class 10 Maths Chapter 7 Coordinate Geometry Ex 7.1
Class 10 : NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.2
Class 10 : CBSE Class 10 Maths Chapter 10 Circles solutions Ex 10.2
Class 10 : CBSE Class 10 Maths Chapter 13 Surface Areas and Volumes solutions Ex 13.2