NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 || CBSE class 10 maths chapter 8 Ex 8.4

NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 || CBSE class 10 maths chapter 8 Ex 8.4

Explore the NCERT Solutions for Class 10 Maths Chapter 8: Introduction to Trigonometry (English Medium), with detailed explanations for Exercise 8.4. This resource is designed to simplify complex Introduction to Trigonometry, helping Class 10 Maths students grasp the subject effortlessly. For any queries regarding NCERT Solutions for Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.4, feel free to leave a comment, and we’ll respond as soon as possible. || Class 10 Maths Chapter 8 Introduction to Trigonometry Ex 8.4 || NCERT Solutions for Class 10 Maths Chapter 8: Introduction to Trigonometry (English Medium)

NCERT Solutions for Class 10 Maths Chapter 13: Surface Areas and Volumes || CBSE Class 10 Maths Chapter 13 solutions Ex 13.5

NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 || CBSE class 10 maths chapter 8 Ex 8.4
Exercise 8.4

NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 || CBSE class 10 maths chapter 8 Ex 8.4
Download the Math Ninja App Now
1. Express the trigonometric ratios \( \sin A, \sec A \) and \( \tan A \) in terms of \( \cot A \).
Answer
We know that,
\( \operatorname{cosec}^{2} A=1+\cot ^{2} A \)
\( \frac{1}{\operatorname{cosec}^{2} A}=\frac{1}{1+\cot ^{2} A} \)
\( \sin ^{2} A=\frac{1}{1+\cot ^{2} A} \)
\( \sin A= \pm \frac{1}{\sqrt{1+\cot ^{2} A}} \)
\( \sqrt{1+\cot ^{2} A} \) will always be positive as we are adding two positive quantities.
Therefore, \( \sin A=\frac{1}{\sqrt{1+\cot ^{2} A}} \)
We know that, \( \tan A=\frac{\sin A}{\cos A} \)
However, \( \cot A=\frac{\cos A}{\sin A} \)
Therefore, \( \tan A=\frac{1}{\cot A} \)
Also, \( \sec ^{2} A=1+\tan ^{2} A \)
\( =1+\frac{1}{\cot ^{2} A} \)
\( =\frac{\cot ^{2} A+1}{\cot ^{2} A} \)
\( \sec A=\frac{\sqrt{\cot ^{2} A+1}}{\cot A} \)
NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 || CBSE class 10 maths chapter 8 Ex 8.4
Download the Math Ninja App Now
2. Write all the other trigonometric ratios of \( \angle \mathrm{A} \) in terms of \( \sec A \).
Answer
We know that,
\(\cos A=\frac{1}{\sec A}\)
Also, \(\sin ^{2} A+\cos ^{2} A=1\)
\(\sin ^{2} A=1-\cos ^{2} A\)
\(\sin A=\sqrt{1-\left(-\frac{1}{\sec ^{2} A}\right)^{2}}\)
\(=\sqrt{\frac{\sec ^{2} A-1}{\sec ^{2} A}}=\frac{\sqrt{\sec ^{2} A-1}}{\sec A}\)
\(=\sqrt{\frac{\sec ^{2} A}{\sec ^{2} A}}=\frac{\sqrt{\sec ^{2} A-1}}{\sec A}\)
\(\tan ^{2} A=\sec ^{2} A-1\)
\(\tan A=\sqrt{\sec ^{2} A-1}\)
\(\cot A=\frac{\cos A}{\sin A}=\frac{\sec A}{\sec A}\)
\(=\frac{1}{\sqrt{\sec ^{2} A-1}}\)
\(\operatorname{cosec} A=\frac{1}{\sin A}=\frac{\sec A}{\sqrt{\sec ^{2} A-1}}\)

3.

(i) Evaluate
\( \frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}} \)
Answer
\(\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}\)
\(=\frac{\left[\sin \left(90^{\circ}-27^{\circ}\right)\right]^{2}+\sin ^{2} 27^{\circ}}{\left[\cos \left(90^{\circ}-73^{\circ}\right)\right]^{2}+\cos ^{2} 73^{\circ}}\)
\(=\frac{\left(\cos 27^{\circ}\right]^{2}+\sin ^{2} 27^{\circ}}{\left[\sin 7 3^{\circ}\right]^{2}+\cos ^{2} 73^{\circ}}\)
\(=\frac{\cos ^{2} 27^{\circ}+\sin ^{2} 27^{\circ}}{\sin ^{2} 73^{\circ}+\cos ^{2} 73^{\circ}}\)
\(=\frac{1}{1}\left(\text { As} \sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1\right)\)
\(=1\)
NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 || CBSE class 10 maths chapter 8 Ex 8.4
Download the Math Ninja App Now
(ii) Evaluate
\( \sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ} \)
Answer
\( \sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}\)
\(=\left(\sin 25^{\circ}\right)\left\{\cos \left(90^{\circ}-25^{\circ}\right)\right\}+\cos 25^{\circ}\left\{\sin \left(90^{\circ}-25^{\circ}\right)\right\}\)
\(=\left(\sin 25^{\circ}\right)\left(\sin 25^{\circ}\right)+\left(\cos 25^{\circ}\right)\left(\cos 25^{\circ}\right)\)
\(=\sin 25^{\circ}+\cos 25^{\circ}\)
\(=1\left(\text { As } \sin ^{2} A+\cos ^{2} A=1\right)\)

4.

(i) Choose the correct option. Justify your choice.
\( 9 \sec ^{2} A-9 \tan ^{2} A= \)
(A) 1 (B) 9 (C) 8 (D) 0
Answer
\( 9 \sec ^{2} \mathrm{~A}-9 \tan ^{2} \mathrm{~A}\)
\(=9\left(\sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}\right)\)
\(=9(1)\left[\mathrm{As} \sec ^{2} \mathrm{~A}-\tan ^{2}\mathrm{~A}=1\right]\)
\(=9\)
Hence, alternatives \( (B) \) is correct.
(ii) Choose the correct option. Justify your choice.
\( (1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)= \)
(A) 0 (B) 1 (C) 2 (D) -1
Answer
\( (1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)\)
\(= \left(1+\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}\right)\left(1+\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}\right)\)
\(= \left(\frac{\cos \theta+\sin \theta+1}{\cos \theta}\right)\left(\frac{\sin \theta+\cos \theta-1}{\sin \theta}\right)\)
\(= \frac{(\sin \theta+\cos \theta)^{2}-(1)^{2}}{\sin \theta \cos \theta}\)
\(= \frac{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta}\)
\(= \frac{2 \sin \theta+\cos \theta+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta}=2\)
\(= \frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta}=2\)
Hence, alternative (C) is incorrect.
(iii) Choose the correct option. Justify your choice.
\( (\sec A+\tan A)(1-\sin A)= \)
(A) \( \sec A \) (B) \( \sin A \) (C) \( \operatorname{cosec} A \) (D) \( \cos A \)
Answer
\( (\sec A+\tan \mathrm{A})(1-\sin \mathrm{A})\)
\(=\left(\frac{1}{\cos A}+\frac{\sin A}{\cos A}\right)(1-\sin A)\)
\(=\left(\frac{1+\sin A}{\cos A}\right)(1-\sin A)\)
\(=\frac{1-\sin ^{2} A}{\cos A}=\frac{\cos ^{2} A}{\cos A}\)
\(=\cos A\)
Hence, alternative (D) is correct.
(iv) Choose the correct option. Justify your choice.
\( \frac{1+\tan ^{2} A}{1+\cot ^{2} A}= \)
(A) \( \sec ^{2} A \) (B) \(-1\) (C) \( \cot ^{2} \mathrm{~A} \) (D) \( \tan ^{2} \mathrm{~A} \)
Answer
\( \frac{1+\tan ^{2} A}{1+\cot ^{2} A}=\frac{1+\frac{\sin ^{2} A}{\cos ^{2} A}}{1+\frac{\cos ^{2} A}{\sin ^{2} A}} \)
\( =\frac{\frac{\cos ^{2} A+\sin ^{2} A}{\cos ^{2} A}}{\frac{\sin ^{2} A+\cos ^{2} A}{\sin ^{2} A}}=\frac{\frac{1}{\cos ^{2} A}}{\frac{1}{\sin ^{2} A}} \)
\( =\frac{\sin ^{2} A}{\cos ^{2} A}=\tan ^{2} A \)
Hence, alternative (D) is correct.

5.

(i) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( (\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta} \)
Answer
\( (\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta} \)
L.H.S. \( =(\operatorname{cosec} \theta-\cot \theta)^{2} \)
\( =\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)^{2} \)
\( =\frac{(1-\cos \theta)^{2}}{(\sin \theta)^{2}}-\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta} \)
\( =\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}-\frac{(1-\cos \theta)^{2}}{(1-\cos \theta)(1+\cos \theta)}=\frac{1-\cos \theta}{1+\cos \theta} \)
\( = \) R.H.S.
NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 || CBSE class 10 maths chapter 8 Ex 8.4
Download the Math Ninja App Now
(ii) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( \frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A \)
Answer
\( \frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A \)
\(\text { L.H.S. }=\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}\)
\(=\frac{\cos ^{2} A+(1+\sin A)^{2}}{(1+\sin A)(\cos A)^{2}}\)
\(=\frac{\cos ^{2} A+1+\sin ^{2} A+2 \sin A}{(1+\sin A)(\cos A)}\)
\(=\frac{\sin ^{2} A+\cos ^{2} A+1+2 \sin A}{(1+\sin A)(\cos A)}\)
\(=\frac{1+1+2 \sin A}{(1+\sin A)(\cos A)}=\frac{2+2 \sin A}{(1+\sin A)(\cos A)}\)
\(=\frac{2(1+\sin A)}{(1+\sin A)(\cos A)}=\frac{2}{\cos A}=2 \sec A\)
\(=R . H . S \text {. }\)
(iii) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( \frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta \)
Answer
\( \frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta \)
L.H.S. \( =\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta} \)
\( =\frac{\frac{\sin \theta}{\cos \theta}}{1-\frac{\cos \theta}{\sin \theta}} +\frac{\frac{\cos \theta}{\sin \theta}}{1 - \frac{\sin \theta}{\cos \theta}} \)
\( =\frac{\frac{\sin \theta}{\cos \theta}}{\frac{\sin \theta-\cos \theta}{\sin \theta}+\frac{\cos \theta}{\cos \theta}} \)
\(=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\sin \theta(\sin \theta-\cos \theta)}\)
\( =\frac{1}{(\sin \theta-\cos \theta)}\left[\frac{\sin ^{2} \theta}{\cos \theta} - \frac{\cos^2 \theta}{\sin \theta} \right] \)
\(=\left(\frac{1}{\sin \theta-\cos \theta}\right)\left[\frac{\sin ^{3} \theta-\cos ^{3} \theta}{\sin \theta \cos \theta}\right]\)
\(=\left(\frac{1}{\sin \theta-\cos \theta}\right)\left[\frac{(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta\right)}{\sin \theta \cos \theta}\right]\)
\(=\frac{(1+\sin \theta \cos \theta)}{(\sin \theta \cos \theta)}\)
\( =\sec \theta \operatorname{cosec} \theta \)
\(=R . H . S\)
NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 || CBSE class 10 maths chapter 8 Ex 8.4
Download the Math Ninja App Now
Mathninja.in
(iv) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( \frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A} \)
Answer
\( \frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A} \)
L. H.S. \( =\frac{1+\sec A}{\sec A}=\frac{1+\frac{1}{\cos A}}{\frac{1}{\cos A}} \)
\(=\frac{\cos A+1}{\cos A}=(\cos A+1)\)
\(=\frac{(1-\cos A)(1+\cos A)}{(1-\cos A)}\)
\(=\frac{1-\cos ^{2} A}{1-\cos A}=\frac{\sin ^{2} A}{1-\cos A}\)
\( = \) R.H.S.
(v) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( \frac{\cos A - \sin A+1}{\cos A + \sin A-1} \) \(= \operatorname{cosec} A + \cot A\), using the identity \(\operatorname{cosec}^{2} A= 1 + cot^{2} A\)
Answer
\( \frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A \)
Using the identity \( \operatorname{cosec}^{2} A=1+\cot ^{2} A \)
\(\text { L.H.S. }=\frac{\cos A-\sin A+1}{\cos A+\sin A-1}\)
\(=\frac{\frac{\cos A \sin A}{\sin A}+\frac{1}{\sin A}}{\frac{\sin A}{\sin A}+\frac{\sin A}{\sin A}+\frac{1}{\sin A}}\)
\(=\frac{\cot A-1+\operatorname{cosec} A}{\cot A+1-\operatorname{cosec} A}\)
\(=\frac{\{(\cot A)-(1-\operatorname{cosec} A)\}\{(\cot A)-(1-\operatorname{cosec} A)\}}{\{(\cot A)+(1-\operatorname{cosec} A)\}\{(\cot A)-(1-\operatorname{cosec} A)\}}\)
\(=\frac{(\cot A-1+\operatorname{cosec} A)^{2}}{(\cot A)^{2}-(1-\operatorname{cosec} A)^{2}}\)
\(=\frac{\cot ^{2} A+1+\operatorname{cosec}^{2} A-2 \cot A-2 \operatorname{cosec} A+2 \cot A \operatorname{cosec} A}{\cot ^{2} A-\left(1+\operatorname{cosec}^{2} A-2 \operatorname{cosec} A\right)}\)
\(=\frac{2 \operatorname{cosec}^{2} A+2 \operatorname{cosec} A-2 \cot A-2 \operatorname{cosec} A}{\cot ^{2} A-1-\operatorname{cosec}^{2} A+2 \operatorname{cosec} A}\)
\(=\frac{2 \operatorname{cosec} A(\operatorname{cosec} A+\cot A)-2(\cot A+\operatorname{cosec} A)}{\cot ^{2} A-\operatorname{cosec}^{2} A-1+2 \operatorname{cosec} A}\)
\(=\frac{(\operatorname{cosec} A+\cot A)(2 \operatorname{cosec} A-2)}{-1-1+2 \operatorname{cosec} A}\)
\(=\frac{(\operatorname{cosec} A+\cot A)(2 \operatorname{cosec} A-2)}{(2 \operatorname{cosec} A-2)}\)
\(=\operatorname{cosec} A+\cot A\)
\(=R . H . S\)
NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 || CBSE class 10 maths chapter 8 Ex 8.4
Download the Math Ninja App Now
(vi) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( \sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A \)
Answer
\( \sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A \)
\(\text { L.H.S. }=\sqrt{\frac{1+\sin A}{1-\sin A}}\)
\(\quad=\sqrt{\frac{(1+\sin A)(1+\sin A)}{(1-\sin A)(1+\sin A)}}\)
\(=\frac{(1+\sin A)}{\sqrt{1-\sin ^{2} A}}=\frac{1+\sin A}{\sqrt{\cos ^{2} A}}\)
\(=\frac{1+\sin A}{\cos A}=\sec A+\tan A\)
\(=\text { R.H.S. }\)
(vii) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( \frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta \)
Answer
\( \frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos \theta \cos \theta}=\tan \theta \)
\(\text { L.H.S. } =\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}\)
\( =\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)}\)
\(=\frac{\sin \theta \times\left(1-2 \sin ^{2} \theta\right)}{\cos \theta \times\left\{2\left(1-\sin ^{2} \theta\right)-1\right\}}\)
\(=\frac{\sin \theta \times\left(1-2 \sin ^{2} \theta\right)}{\cos \theta \times\left(1-2 \sin ^{2} \theta\right)}\)
\(=\tan \theta=\text { R.H.S }\)
(viii) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( (\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A \)
Answer
\((\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A\)
\(\text { L.H.S }=(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}\)
\(=\sin ^{2} A+\operatorname{cosec}^{2} A+2 \sin A \operatorname{cosec} A+\cos ^{2} A+\sec ^{2} A+2 \cos A \sec A\)
\(=\left(\sin ^{2} A+\cos ^{2} A\right)+\left(\operatorname{cosec}^{2} A+\sec ^{2} A\right)+2 \sin A\left(\frac{1}{\sin A}\right)+2 \cos A\left(\frac{1}{\cos A}\right)\)
\(=(1)+\left(1+\cot ^{2} A+1+\tan ^{2} A\right)+(2)+(2)\)
\(=7+\tan ^{2} A+\cot ^{2} A\)
\(=\text { R.H.S }\)
(ix) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\( (\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A} \)
Answer
\((\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}\)
\(\text { L.H.S }=(\operatorname{cosec} A-\sin A)(\sec A-\cos A)\)
\(=\left(\frac{1}{\sin A}-\sin A\right)\left(\frac{1}{\cos A}-\cos A\right)\)
\( =\left(\frac{1-\sin ^{2} A}{\sin A}\right)\left(\frac{1-\cos ^{2} A}{\cos A}\right) \)
\(=\frac{\left(\cos ^{2} A\right)\left(\sin ^{2} A\right)}{\sin A \cos A}\)
\(=\sin A \cos A\)
\(\text { R.H.S }=\frac{1}{\tan A+\cot A}\)
\( =\frac{1}{\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}} = \frac{1}{\frac{\sin ^{2} A+\cos ^{2} A}{\sin A \cos A}} \)
\(=\frac{\sin A \cos A}{\sin ^{2} A+\cos ^{2} A}=\sin A \cos A\)
Hence, L.H.S = R.H.S
NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 || CBSE class 10 maths chapter 8 Ex 8.4
Download the Math Ninja App Now
(x) Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
\(\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A \)
Answer
\(\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A\)
\(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=\frac{1+\frac{\sin ^{2} A}{\cos ^{2} A}}{1+\frac{\cos ^{2} A}{\sin ^{2} A}}=\frac{\frac{\cos ^{2} A+\sin ^{2} A}{\cos ^{2} A}}{\frac{\cos ^{2} A}{\sin ^{2} A}}\)
\(=\frac{\frac{1}{\cos ^{2} A}}{\frac{1}{\sin ^{2} A}}=\frac{\sin ^{2} A}{\cos ^{2} A}\)
\(=\tan ^{2} A\)
\(\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\frac{1+\tan ^{2} A-2 \tan A}{1+\cot ^{2} A-2 \cot A}\)
\(=\frac{\sec ^{2} A-2 \tan A}{\operatorname{cosec}^{2} A-2 \cot A}\)
\(=\frac{\frac{1}{\cos ^{2} A}-\frac{2 \sin A}{\cos A}}{\frac{1}{\sin ^{2} A}-\frac{2 \cos A}{\sin A}}=\frac{\frac{1-2 \sin A \cos A}{\cos ^{2} A}}{\frac{1-2 \sin ^{2} A}{\sin ^{2} A}}\)
\(=\frac{\sin ^{2} A}{\cos ^{2} A}=\tan ^{2} A\)
NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 || CBSE class 10 maths chapter 8 Ex 8.4
Download the Math Ninja App Now

Central Board of Secondary Education Official Site
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.1
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.2
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.3
Class 10 : CBSE Class 10 Maths Chapter 2 Polynomials Ex 2.1
Class 10 : CBSE Class 10 Maths Chapter 2 Polynomials Ex 2.2
Class 10 : CBSE Class 10 Maths Chapter 2 Polynomials Ex 2.4
Class 10 : CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.2
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.3
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.4
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.5
Class 10 : CBSE Class 10 Maths Chapter 3: Pair of Linear Equations in Two Variables || CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.6
Class 10 : CBSE Class 10 Maths Chapter 4 Quadratic Equations Ex 4.1 || NCERT Solutions for Class 10 Maths Chapter 4: Quadratic Equations (English Medium)
Class 10 : CBSE Class 10 Maths Chapter 4 Quadratic Equations Ex 4.2 || NCERT Solutions for Class 10 Maths Chapter 4: Quadratic Equations (English Medium)
Class 10 : CBSE Class 10 Maths Chapter 4 Quadratic Equations Ex 4.3 || NCERT Solutions for Class 10 Maths Chapter 4: Quadratic Equations (English Medium)
Class 10 : CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.1
Class 10 : CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.2
Class 10 : CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3
Class 10 : NCERT Math Solutions for Class 10 Maths Chapter 6 Triangle(English Medium) || CBSE Class 10 Maths Chapter 6 Triangle Ex 6.1
Class 10 : NCERT Math Solutions for Class 10 Maths Chapter 6 Triangle(English Medium) || CBSE Class 10 Maths Chapter 6 Triangle Ex 6.2
Class 10 : NCERT Math Solutions for Class 10 Maths Chapter 6 Triangle(English Medium) || CBSE Class 10 Maths Chapter 6 Triangle Ex 6.3
Class 10 : NCERT Math Solutions for Class 10 Maths Chapter 6 Triangle(English Medium) || CBSE Class 10 Maths Chapter 6 Triangle Ex 6.4
Class 10 : NCERT Math Solutions for Class 10 Maths Chapter 6 Triangle(English Medium) || CBSE Class 10 Maths Chapter 6 Triangle Ex 6.5
Class 10 : NCERT Math Solutions for Class 10 Maths Chapter 6 Triangle(English Medium) || CBSE Class 10 Maths Chapter 6 Triangle Ex 6.6
Class 10 : NCERT Math Solutions for Class 10 Maths Chapter 7 Coordinate Geometry(English Medium) || CBSE Class 10 Maths Chapter 7 Coordinate Geometry Ex 7.1
Class 10 : NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.2
Class 10 : CBSE Class 10 Maths Chapter 10 Circles solutions Ex 10.2
Class 10 : CBSE Class 10 Maths Chapter 13 Surface Areas and Volumes solutions Ex 13.2
NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4 || CBSE class 10 maths chapter 8 Ex 8.4
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top