4. In one fortnight of a given month, there was a rainfall of 10 cm in a river valley. If the area of the valley is \( 7280 \mathrm{~km}^{2} \), show that the total rainfall was approximately equivalent to the addition to the normal water of three rivers each 1072 km long, 75 m wide and 3 m deep.
Answer
Area of the valley \( =7280 \mathrm{~km}^{2} \)If there was a rainfall of 10 cm in the valley then amount of rainfall in the valley \( = \) area of the valley \( \times 10 \mathrm{~cm} \)
Amount of rainfall in the valley \( =7280 \mathrm{~km}^{2} \times 10 \mathrm{~cm} \)
[As \( 1 \mathrm{~km}=1000 \mathrm{~m}=100000 \mathrm{~cm} \)]
\( 1 \mathrm{~cm}=\frac{1}{100000} \mathrm{~km} \)
Amount of rainfall in one day
\( =7280 \mathrm{~km}^{2}\left(\frac{10}{100000} \mathrm{~km}\right) \)
\( =0.728 \mathrm{~km}^{3} \) \( \qquad \) \(\dots\dots\) [i]
Length of each river, \( l=1072 \mathrm{~km} \)
The breadth of each river, \( b=75 \mathrm{~m} \)
\(=\frac{75}{1000} \mathrm{~km}\)
Depth of each river, \( h=3 \mathrm{~m} \)
\(=\frac{3}{1000} \mathrm{~km}\)
The volume of each river \( =l \times b \times h \)
\(=1072 \times \frac{75}{1000} \times \frac{3}{1000}\)
\(=\frac{241200}{1000000}\)
\(=0.2412 \mathrm{~km}^{3}\)
Volume of three such rivers \( =3 \times \) Volume of each river \( =3 \times 0.2412 \mathrm{~km}^{3} \)
\( =0.7236 \mathrm{~km}^{3} \) \( \qquad \) \(\dots\dots\) [ii]
[i] and [ii] are approximately equal.
NCERT Solutions for Class 10 Maths Chapter 13: Surface Areas and Volumes || CBSE Class 10 Maths Chapter 13 solutions Ex 13.5
Download the Math Ninja App Now5. An oil funnel made of tin sheet consists of a 10 cm long cylindrical portion attached to a frustum of a cone. If the total height is 22 cm, diameter of the cylindrical portion is 8 cm and the diameter of the top of the funnel is 18 cm, find the area of the tin sheet required to make the funnel (see Fig. 13.25)
Answer
Given:Radius \( \left(r_{1}\right) \) of upper circular end of frustum part \( =\frac{18}{2}=9 \mathrm{~cm} \)
Radius \( \left(r_{2}\right) \) of lower circular end of frustum part \( = \) Radius of circular end of cylindricalpart \( =\frac{8}{2}=4 \mathrm{~cm} \)
Height \( \left(h_{1}\right) \) of frustum part \( =22-10=12 \mathrm{~cm} \)
Height \( \left(h_{2}\right) \) of cylindrical part \( =10 \mathrm{~cm} \)
Slant height \( (l) \) of frustum part
\(=\sqrt{(9-4) \times(9-4)+(12) \times 12}\)
\(=13 \mathrm{~cm}\)
Area of tin sheet required \( =\mathrm{CSA} \) of frustum part \(+\) CSA of cylindrical part
\(=\pi\left(r_{1}+r_{2}\right) \times l+2 \pi r_{2} \mathrm{~h}_{2}\)
\(=\frac{22}{7}(9+4) \times 13+2 \times \frac{22}{7} \times 4 \times 10\)
\(=\frac{22}{7}[169+80]\)
\(=\frac{22 \times 249}{7}\)
\(=782 \frac{4}{7} \mathrm{~cm}^{2}\)
NCERT Solutions for Class 10 Maths Chapter 13: Surface Areas and Volumes || CBSE Class 10 Maths Chapter 13 solutions Ex 13.5
Download the Math Ninja App Now6. Derive the formula for the curved surface area and total surface area of the frustum of acone, given to you in Section 13.5, using the symbols as explained.
Answer
Let ABC be a cone. A frustum DECB is cut by a plane parallel to its base. Let \( r_{1} \) and \( r_{2} \) be the radii of the ends of the frustum of the cone and \( h \) be the height of the frustum of the coneIn \( \triangle \mathrm{ABG} \) and \( \triangle \mathrm{ADF}, \mathrm{DF} \| \mathrm{BG} \)
\(\frac{D F}{B G}=\frac{A F}{A G}=\frac{A D}{A B}\)
\(\frac{r_{2}}{r_{1}}=\frac{h_{1}-h}{h_{1}}=\frac{l_{1}-l}{l_{1}}\)
\(\frac{r_{2}}{r_{1}}=1-\frac{h}{h_{1}}=1-\frac{l}{l_{1}}\)
\(1-\frac{l}{l_{1}}=\frac{r_{2}}{r_{1}}\)
\(\frac{l}{l_{1}}=1-\frac{r_{2}}{r_{1}}=\frac{r_{1}-r_{2}}{r_{1}}\)
\(\frac{l_{1}}{l}=\frac{r_{1}}{r_{1}-r_{2}}\)
\(l_{1}=\frac{r_{1} l}{r_{1}-r_{2}}\)
CSA of frustum \( \mathrm{DECB}=\mathrm{CSA} \) of cone \( \mathrm{ABC}-\mathrm{CSA} \) cone ADE
\(=\pi r_{1} l_{1}-\pi r_{2}\left(l_{1}-l\right)\)
\(=\pi r_{1}\left(\frac{l r_{1}}{r_{1}-r_{2}}\right)-\pi r_{2}\left[\frac{r_{1} l}{r_{1}-r_{2}}-l\right]\)
\(=\frac{\pi \times r_{1} \times r_{1} \times l}{r_{1}-r_{2}}-\frac{\pi \times r_{2} \times r_{2} \times l}{r_{1}-r_{2}}\)
\(=\pi l\left[\frac{r_{1} \times r_{1}-r_{2} \times r_{2}}{r_{1}-r_{2}}\right]\)
\(\mathrm{CSA}=\pi\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) \times l\)
Total surface area of frustum \( = \) CSA \(+\) Area of upper circular end \(+\) Area of lower circular end
\(=\pi\left(r_{1}+r_{2}\right) \times 1+\pi r_{2} ^{2}+\pi r_{1}^{2}\)
\(=\pi\left[\left(r_{1}+r_{2}\right) \times l+r _{1}^{2}+r_{2} ^{2}\right]\)
NCERT Solutions for Class 10 Maths Chapter 13: Surface Areas and Volumes || CBSE Class 10 Maths Chapter 13 solutions Ex 13.5
Download the Math Ninja App Now7. Derive the formula for the volume of the frustum of a cone, given to you in Section 13.5, using the symbols as explained.
Answer
Let ABC be a cone.And,
A frustum DECB is cut by a plane parallel to its base
Now,
Let \( r_{1} \) and \( r_{2} \) be the radii of the ends of the frustum of the cone and \( h \) be the height of the frustum of the cone
In \( \triangle \mathrm{ABG} \) and \( \triangle \mathrm{ADF}, \mathrm{DF} \| \mathrm{BG} \)
\( \frac{D F}{B G}=\frac{A F}{A G}=\frac{A D}{A B}\)
\(\frac{r_{2}}{r_{1}}=\frac{h_{1}-h}{h_{1}}=\frac{l_{1}-l}{l_{1}}\)
\(\frac{r_{2}}{r_{1}}=1-\frac{h}{h_{1}}=1-\frac{l}{l_{1}}\)
\(\frac{1}{1-\frac{h}{h_{1}}}=\frac{r_{2}}{r_{1}}\)
\(\frac{h}{h_{1}}=1-\frac{r_{2}}{r_{1}}=\frac{r_{1}-r_{2}}{r_{1}}\)
\(\frac{h_{1}}{h}=\frac{r_{1}}{r_{1}-r_{2}}\)
\(h_{1}=\frac{r_{1} h}{r_{1}-r_{2}} \)
Volume of frustum of cone \( = \) Volume of cone ABC \(-\) Volume of cone ADE
\(=\frac{1}{3} \pi \mathrm{r}_{1}^{2} \mathrm{h}_{1}-\frac{1}{3} \pi \mathrm{r} _{2}^{2}\left(\mathrm{h}_{1}-\mathrm{h}\right)\)
\(=\frac{\pi}{3}\left[\mathrm{r}_{1}^{2} \mathrm{h}_{1}-\mathrm{r} _{2}^{2}\left(\mathrm{h}_{1}-\mathrm{h}\right)\right]\)
\(=\frac{\pi}{3}\left[\mathrm{r} _{1}^{2}\left(\frac{h r_{1}}{r_{1}-r_{2}}\right)-\mathrm{r}_{2}^{2}\left(\frac{h r_{1}}{r_{1}-r_{2}}-h\right)\right]\)
\(=\frac{\pi}{3}\left[\frac{h \times r_{1} \times r_{1} \times r_{1}}{r_{1}-r_{2}}-\frac{h \times r_{2} \times r_{2} \times r_{2}}{r_{1}-r_{2}}\right]\)
\( =\frac{\pi}{3} \times \mathrm{~h}\left[\frac{r_{1} \times r_{1} \times r_{1}-r_{2} \times r_{2} \times r_{2}}{r_{1}-r_{2}}\right] \)
\(=\frac{\pi}{3} \mathrm{~h}\left[\frac{\left(r_{1}-r_{2}\right)\left(r_{1} \times r_{1}+r_{2} \times r_{2}+r_{1} \times r_{2}\right)}{r_{1}-r_{2}}\right]\)
\(=\frac{1}{3} \mathrm{~h}\left[r_{1}^{2}+r _{2}^{2}+r_{1} r_{2}\right] \)
NCERT Solutions for Class 10 Maths Chapter 13: Surface Areas and Volumes || CBSE Class 10 Maths Chapter 13 solutions Ex 13.5
Download the Math Ninja App NowCentral Board of Secondary Education Official Site
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.1
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.2
Class 10 : NCERT Solutions for Class 10 Maths Chapter 1 Exercise 1.3
Class 10 : CBSE Class 10 Maths Chapter 2 Polynomials Ex 2.1
Class 10 : CBSE Class 10 Maths Chapter 2 Polynomials Ex 2.2
Class 10 : CBSE Class 10 Maths Chapter 2 Polynomials Ex 2.4
Class 10 : CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1
Class 10 : CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.2
Class 10 : CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.3
Class 10 : CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.4
Class 10 : CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.5
Class 10 : CBSE Class 10 Maths Chapter 3 Pair of Linear Equations in Two Variables solutions Ex 3.6
Class 10 : CBSE Class 10 Maths Chapter 4 Quadratic Equations Ex 4.1
Class 10 : CBSE Class 10 Maths Chapter 4 Quadratic Equations Ex 4.2
Class 10 : CBSE Class 10 Maths Chapter 4 Quadratic Equations Ex 4.3
Class 10 : CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.1
Class 10 : CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.2
Class 10 : CBSE Class 10 Maths Chapter 5 Arithmetic Progressions Ex 5.3
Class 10 : CBSE Class 10 Maths Chapter 6 Triangle Ex 6.1
Class 10 : CBSE Class 10 Maths Chapter 6 Triangle Ex 6.2
Class 10 : CBSE Class 10 Maths Chapter 6 Triangle Ex 6.3
Class 10 : CBSE Class 10 Maths Chapter 6 Triangle Ex 6.4
Class 10 : CBSE Class 10 Maths Chapter 6 Triangle Ex 6.5
Class 10 : CBSE Class 10 Maths Chapter 6 Triangle Ex 6.6
Class 10 : CBSE Class 10 Maths Chapter 7 Coordinate Geometry Ex 7.1
Class 10 : CBSE Class 10 Maths Chapter 7 Coordinate Geometry Ex 7.2
Class 10 : CBSE Class 10 Maths Chapter 7 Coordinate Geometry Ex 7.3
Class 10 : CBSE Class 10 Maths Chapter 7 Coordinate Geometry Ex 7.4
Class 10 : NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.1
Class 10 : NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.2
Class 10 : NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.3
Class 10 : NCERT Solutions for Class 10 Maths Chapter 8 Exercise 8.4
Class 10 : NCERT Solutions for Class 10 Maths Chapter 9
Class 10 : CBSE Class 10 Maths Chapter 10 Circles solutions Ex 10.2
Class 10 : CBSE Class 10 Maths Chapter 13 Surface Areas and Volumes solutions Ex 13.2